SPICE Device Model Si1413EDH

P-Channel 20-V (D-S) MOSFET with Copper Leadframe

Characteristics

- P-channel Vertical DMOS
- Macro-Model (Sub-circuit)
- Level 3 MOS
- Applicable for Both Linear and Switch Mode
- Applicable Over a -55 to 125°C Temperature Range
- Models Gate Charge, Transient, and Diode Reverse Recovery Characteristics

Description

The attached SPICE Model describes typical electrical characteristics of the p-channel vertical DMOS. The sub-circuit model was extracted and optimized over a -55°C to 125°C temperature range under pulse conditions for 0 to -5 volts gate drives. Saturated output impedance model accuracy has been maximized for gate biases near threshold voltage. A novel gate-to-drain

feedback capacitor network is used to model gate charge characteristics while avoiding convergence problems of switched $C_{\rm gd}$ model. Model parameter values are optimized to provide a best fit to measure electrical data and are not intended as an exact physical description of a device.

Model Sub-circuit

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Siliconix 4/13/01 Document: 71502

SPICE Device Model Si1413EDH

P-Channel Device (T_J=25°C Unless Otherwise Noted)

Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static			Data	Data	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -100 \mu A$	0.80		V
On-State Drain Current ^a	$I_{\mathrm{D(on)}}$	$V_{DS} = -5V, V_{GS} = -4.5V$	36		A
Drain-Source On-State Resistance ^a	` ,	$V_{GS} = -4.5V, I_D = -2.9A$	0.098	0.095	
	$r_{\mathrm{DS(on)}}$	$V_{GS} = -2.5V, I_D = -2.4A$	0.132	0.125	Ω
		$V_{GS} = -1.8V, I_D = -1.0A$	0.178	0.180	
Forward Transconductance ^a	g_{fs}	$V_{DS} = -10V, I_{D} = -2.9A$	6.7	6	S
Diode Forward Voltage ^a	V_{SD}	$I_{S} = -1.4A, V_{GS} = 0V$	- 0.80	- 0.80	V
Dynamic ^b					
Total Gate Charge	Q_{g}		5.6	5.6	
Gate-Source Charge	Q_{gs}	$V_{\mathrm{DS}} = -10 \mathrm{V},$	1.2	1.2	nC
_	C	$V_{GS} = -4.5V, I_D = -2.9A$			
Gate-Drain Charge	Q_{gd}		1.2	1.2	
Turn-On Delay Time	$t_{d(on)}$		1.1	0.75	
Rise Time	t _r	$V_{\rm DD} = -10 V, R_{\rm L} = 10 \Omega$	2.9	1.6	
Turn-Off Delay Time	$t_{ m d(off)}$	$I_D \cong -1A, V_{GEN} = -4.5V,$	9.3	3.9	ns
-		$R_G = 6\Omega$			
Fall Time	t_{f}		15	3.9	

Notes:

2

Document: 71502

a) Pulse test; pulse width $\leq 300 \,\mu\text{s}$, duty cycle $\leq 2\%$

b) Guaranteed by design, not subject to production testing

SPICE Device Model Si1413EDH

Siliconix 4/13/01 Document: 71502