SPICE Device Model Si1917EDH

Dual P-Channel 12-V (D-S) MOSFET with Copper Leadframe

Characteristics

- P-channel Vertical DMOS
- Macro-Model (Sub-circuit)
- Level 3 MOS
- Applicable for Both Linear and Switch Mode
- Applicable Over a -55 to 125°C Temperature Range
- Models Gate Charge, Transient, and Diode Reverse Recovery Characteristics

Description

The attached SPICE Model describes typical electrical characteristics of the p-channel vertical DMOS. The sub-circuit model was extracted and optimized over a -55°C to 125°C temperature range under pulse conditions for 0 to -5 volts gate drives. Saturated output impedance model accuracy has been maximized for gate biases near threshold voltage. A novel gate-to-drain

feedback capacitor network is used to model gate charge characteristics while avoiding convergence problems of switched $C_{\rm gd}$ model. Model parameter values are optimized to provide a best fit to measure electrical data and are not intended as an exact physical description of a device.

Model Sub-circuit

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Siliconix 4/13/01 Document: 71480

Model Evaluation

P-Channel Device (T_J=25°C Unless Otherwise Noted)

Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -100 \mu A$	0.74		V
On-State Drain Current ^a	$I_{D(on)}$	$V_{DS} = -5V, V_{GS} = -4.5V$	9.2		A
Drain-Source On-State Resistance ^a		$V_{GS} = -4.5V, I_{D} = -1.0A$	0.302	0.300	
	$r_{\mathrm{DS(on)}}$	$V_{GS} = -2.5V, I_{D} = -0.81A$	0.498	0.470	Ω
		$V_{GS} = -1.8V, I_D = -0.20A$	0.709	0.660	
Forward Transconductance ^a	g_{fs}	$V_{DS} = -10V, I_{D} = -1.0A$	1.71	1.7	S
Diode Forward Voltage ^a	V_{SD}	$I_{S} = -0.47A, V_{GS} = 0V$	- 0.80	- 0.85	V
Dynamic ^b					
Total Gate Charge	Q_{g}		1.2	1.3	
Gate-Source Charge	Q_{gs}	$V_{DS} = -6V$,	0.31	0.31	nC
	_	$V_{GS} = -4.5V, I_D = -1.0A$			
Gate-Drain Charge	Q_{gd}		0.31	0.31	
Turn-On Delay Time	$t_{d(on)}$		0.34	0.17	
Rise Time	$t_{\rm r}$	$V_{DD} = -6V, R_L = 12\Omega$	1.0	0.47	
Turn-Off Delay Time	$t_{d(off)}$	$I_{\rm D} \cong -0.5 {\rm A}, V_{\rm GEN} = -4.5 {\rm V},$	2.5	0.96	ns
		$R_G = 6\Omega$			
Fall Time	t_{f}		4.8	1.0	

Notes:

a) Pulse test; pulse width $\leq 300 \ \mu s$, duty cycle $\leq 2\%$

b) Guaranteed by design, not subject to production testing

Siliconix 4/13/01 Document: 71480

SPICE Device Model Si1917EDH

Siliconix 4/13/01 Document: 71480