SPICE Device Model Si4850EY

N-Channel Reduced Qg, Fast Switching MOSFET

Characteristics

- N-channel Vertical DMOS
- Macro-Model (Sub-circuit)
- Level 3 MOS
- Applicable for Both Linear and Switch Mode
- Applicable Over a -55 to 125°C Temperature Range
- Models Gate Charge, Transient, and Diode Reverse Recovery Characteristics

Description

The attached SPICE Model describes typical electrical characteristics of the n-channel vertical DMOS. The sub-circuit model was extracted and optimized over a 25°C to 125°C temperature range under pulse conditions for 0 to 10 volt gate drives. Saturated output impedance model accuracy has been maximized for gate biases near threshold. A novel gate-to-drain feedback

capacitor network is used to model gate charge characteristics while avoiding convergence problems of switched $C_{\rm gd}$ model. Model parameter values are optimized to provide a best fit to measure electrical data and are not intended as an exact physical description of a device.

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Siliconix 4/16/01 Document: 71473

N-Channel Device (T_J=25°C Unless Otherwise Noted)

Parameter	Symbol	Test Conditions	Typical	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.95	V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5V$, $V_{GS} = 10V$	248	A
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = 10V, I_D = 6A$	0.017	
		$V_{GS} = 10V, I_D = 6A,$	0.026	Ω
		$T_{J} = 125C$		
		$V_{GS} = 10V, I_D = 6A,$	0.032	
		$T_J = 175C$		
		$V_{GS} = 4.5 V, I_D = 5.1 A$	0.023	
Forward Transconductance ^a	\mathbf{g}_{fs}	$V_{DS} = 15V, I_D = 6A$	22	S
Diode Forward Voltage ^a	V_{SD}	$I_{S} = 1.7A, V_{GS} = 0V$	0.80	V
Dynamic ^b				
Total Gate Charge	Q_{g}		17.5	
Gate-Source Charge	Q_{gs}	$V_{DS} = 30V, V_{GS} = 10V,$	3.4	nC
_		$I_D = 6A$		
Gate-Drain Charge	Q_{gd}		5.3	
Turn-On Delay Time	$t_{d(on)}$		22	
Rise Time	$t_{\rm r}$	$V_{DD} = 30V, R_L = 30\Omega$	25	
Turn-Off Delay Time	$t_{d(off)}$	$I_D \cong 1A, V_{GEN} = 10V,$	42	ns
		$R_G = 6\Omega$		
Fall Time	$t_{ m f}$		48	
Source-Drain Reverse Recovery Time	trr	$I_F = 1.7A \text{ di/dt} = 100A/\mu s$	39	

Notes:

- a) Pulse test; pulse width $\leq 300 \,\mu\text{sec}$, duty cycle $\leq 2\%$
- b) Guaranteed by design, not subject to production testing

Siliconix 4/16/01 Document: 71473

SPICE Device Model Si4850EY

Comparison of Model with Measured Data (T_J=25°C Unless Otherwise Noted)

4/16/01 Document: 71473