SC1545 500mA SmartLDO™ With Power Up Signal Sequencing

POWER MANAGEMENT

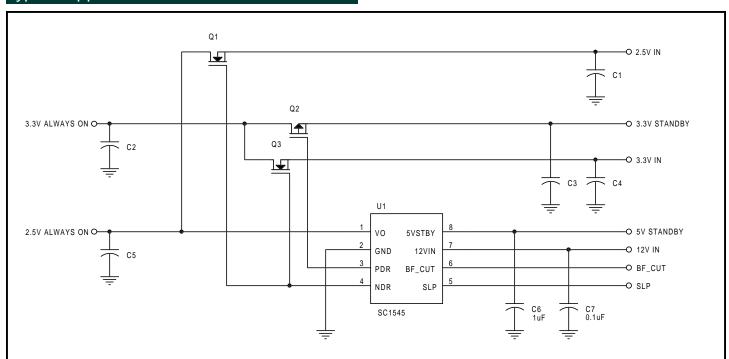
Description

The SC1545 was designed for instantly available motherboard applications. As part of the Semtech family of SmartLDOs it provides additional control functions not available in a standard LDO.

The device provides the capability to control three separate supplies. There is an on-board 500mA, 2.5V LDO with current limit protection, and drive pins for an N-channel MOSFET and a P-channel MOSFET. Internal logic circuitry ensures that the system starts up in a controlled manner, and that the correct outputs are enabled during specific sequences of BF_CUT and SLP.

The LDO draws its power from the 5V standby supply, and the N-channel MOSFET drive is derived from the 12V supply.

The SC1545 is available in the surface mount SO-8 package.


Features

- 500mA LDO with Over Current Protection (OCP)
- ◆ ±2.5% LDO regulation over line, load and temperature
- Power sequencing for three supplies
- Over temperature protection
- ◆ S0-8 surface mount package

Applications

- Instantly available motherboards
- Embedded systems
- Desktop computers

Typical Application Circuit

Notes:

(1) 2.5V Always On generated from SC1545 2.5V LDO and system 2.5V using one external N-channel MOSFET. MOSFET source connected to system 2.5V to prevent backfeeding through the body diode when this supply is low. (2) 3.3V Always On generated from system 3.3V and 3.3V Standby supplies using two external MOSFETS, one N-channel and one P-channel. N-channel MOSFET source connected to system 3.3V to prevent backfeeding through the body diode when this supply is low.

Absolute Maximum Ratings

Parameter	Symbol	Maximum	Units
12V Input Voltage Range	V _{12VIN}	-0.3 to +15	V
5V Input Voltage Range	V _{5VSTBY}	-0.3 to +7	V
P-channel MOSFET Gate Drive	V_{PDR}	-0.3 to 5VSTBY	V
N-channel MOSFET Gate Drive	V_{NDR}	-0.3 to 12VIN	V
Input Pins	V_{BF_CUT}, V_{SLP}	-0.3 to 5VSTBY	V
Thermal Impedance Junction to Ambient ⁽¹⁾	$\theta_{\sf JA}$	65	°C/W
Thermal Impedance Junction to Case	$\theta_{ extsf{JC}}$	47	°C/W
Operating Ambient Temperature Range	T _A	0 to +70	°C
Operating Junction Temperature Range	T _J	0 to +125	°C
Storage Temperature Range	T _{STG}	-65 to +150	°C
Lead Temperature (Soldering) 10 Seconds	T _{LEAD}	300	°C
ESD Rating (Human Body Model)	V _{ESD}	2	kV

Note:

(1) 1 square inch of 1/16" FR-4, double sided, 1 oz. minimum copper weight.

Electrical Characteristics

Unless specified: $V_{12VIN} = 12V$, $V_{5VSTBY} = 5V$, $C_{OUT} = 100\mu F$, $T_A = 25^{\circ}C$. Values in **bold** apply over full operating temperature range.

Parameter	Symbol	Test Conditions		Тур	Max	Units		
12VIN								
Supply Voltage	V _{12VIN}		11.28	12.00	12.72	V		
Quiescent Current	I _{Q12}			800	1000	μA		
					1200			
5VSTBY								
Supply Voltage	V _{5VSTBY}		4.7	5.0	5.3	V		
Quiescent Current	I _{Q5}	LDO ON		9.5	11.0	mA		
					12.0			
		LDO OFF		3	4	mA		
					5			
Undervoltage Lockout (5VSTBY)								
UVLO Threshold	V _{UVLO}	V _{5VSTBY} rising	4.1	4.3	4.5	V		
		V _{5VSTBY} falling	3.9	4.1	4.3	V		

Electrical Characteristics (Cont.)

Unless specified: $V_{12VIN} = 12V$, $V_{5VSTBY} = 5V$, $C_{OUT} = 100 \mu F$, $T_A = 25^{\circ}C$. Values in **bold** apply over full operating temperature range.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units	
Undervoltage Lockout (5VSTBY) (Cont.)							
Hysteresis	V _{HYST}			200		mV	
Logic Reset Threshold	V _{RST}		1.5	2.0	2.5	V	
OUT			•	•			
LDO Output Voltage	V _{out}	$4.7V \le V_{\text{5VSTBY}} \le 5.3V, 1\text{mA} \le I_{\text{OUT}} \le 500\text{mA}$	-1.5%	2.525	+1.5%	V	
			-2.5%		+2.5%		
LDO Output Voltage ⁽¹⁾ During Load Transients	V _{OUT(T)}	$I_{OUT} = 0$ mA to 500mA, $t_r = 8$ A/ μ s max.	-3.0%	2.525	+3.0%	V	
Time to Regulation ⁽²⁾	t _{reg}				5	μs	
Inputs (BF_CUT & SLP))						
Input Resistance	R_{IN}	$V_{BF_CUT} = V_{SLP} = 5V$	1	10		ΜΩ	
High Level Input Voltage	$V_{\mathbb{H}}$		2.0			<	
Low Level Input Voltage	V _L				0.8	V	
NDR							
Peak Drive Current	l _{NDR(PK)}	Sinking: $V_{NDR} = 0.5V$; Sourcing: $V_{NDR} = 10V$	30			mA	
Output Voltage	$V_{OH(N)}$	Full ON, I _{NDR} = 100μA	10	12		٧	
	$V_{OL(N)}$	Full OFF, I _{NDR} = -100µA			0.3		
Drive Low Delay	t _{DL(N)}	Measured from BF_CUT threshold to 90% of NDR			150	ns	
Fall Time	t _{f(N)}	Measured from 90% to 10% of NDR			1.0	μs	
Drive High Delay	t _{DH(N)}	Measured from BF_CUT/SLP threshold to 10% of NDR			300	ns	
Rise Time	t _{r(N)}	Measured from 10% to 90% of NDR			1.0	μs	
PDR							
Peak Drive Current	l _{PDR(PK)}	Sinking: $V_{PDR} = 0.5V$; Sourcing: $V_{PDR} = 3.5V$	30			mA	
Output Voltage	V _{OH(P)}	Full OFF, I _{PDR} = 100µA		5		V	
	$V_{OL(P)}$	Full ON, I _{PDR} = -100μA			0.3		
Drive Low Delay	t _{DL(P)}	Measured from BF_CUT threshold to 90% of PDR			150	ns	
Fall Time	t _{f(P)}	Measured from 90% to 10% of PDR			1.0	μs	
Drive High Delay	t _{DH(P)}	Measured from BF_CUT/SLP threshold to 10% of PDR			300	ns	
Rise Time	t _{r(P)}	Measured from 10% to 90% of PDR			1.0	μs	
Overcurrent Protection							
Current Limit	I _{CL}	V _{OUT} = 0V	550			mA	

Electrical Characteristics (Cont.)

Notes:

- (1) The LDO will bring the output back to within the regular $\rm V_{out}$ limits in less than 10 μs .
- (2) External 2.5V \pm 2.5% applied at output, turning off when NDR goes low. $C_{OUT} = 100 \mu F$ to $400 \mu F$, $I_{OUT} = 50 mA$ to 200 mA.

Timing Diagrams

Power-up signal sequencing is shown in Figure 1 below. BF_CUT, PDR and NDR follow the power rails up to their final values. SLP goes to its high value when the power rails have stabilized, ~25msec after power on. BF_CUT

is pulled low a period T1 after SLP goes high. T1 can be as short as 1ms but typical measured values are ~200ms. The 2.5V LDO output stays OFF through this entire sequence.

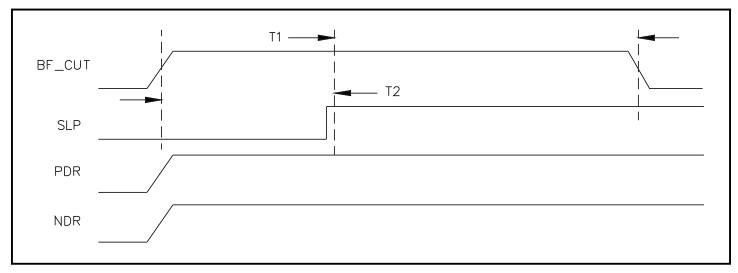


Figure 1: Power Up Signal Sequencing

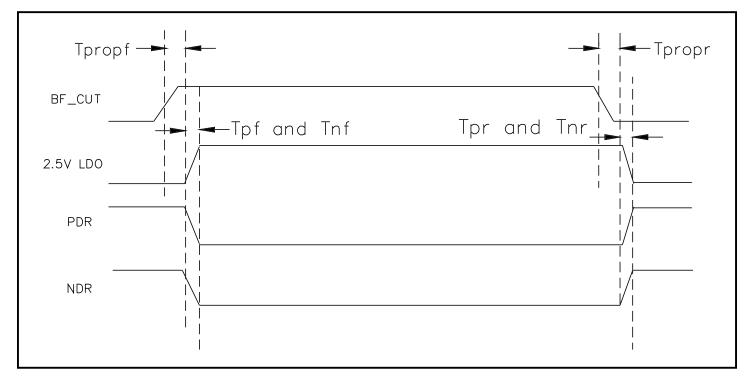
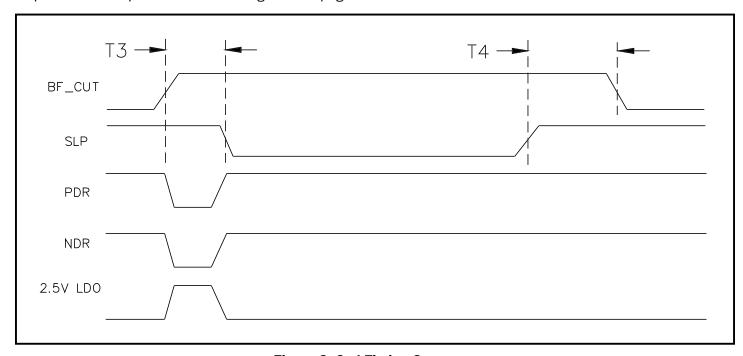


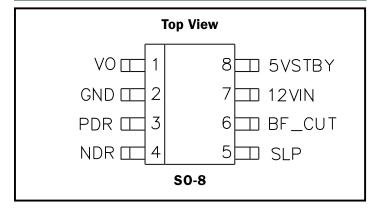
Figure 2: 1st Timing Sequence

Timing Diagrams (Cont.)

After power up, there are two possible signal sequences that the device will see. The first sequence is with SLP staying HIGH and BF_CUT transitioning from LOW to HIGH, remaining HIGH for an undetermined period and then going back to LOW. At this point, the system state is back to where it was at the end of the power up sequence. The sequence is shown in Figure 2 on page 4.

During these BF_CUT transitions, the propagation delays, rise and fall times, and going into regulation times for PDR, NDR and VO are described in the Electrical Characteristics on pages 2 and 3. The first sequence can start at any time after the end of the power up sequence.

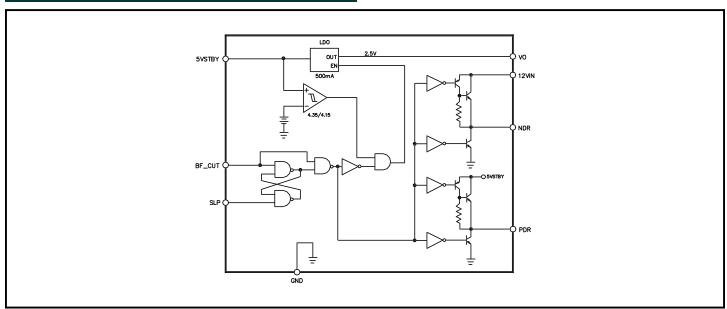



Figure 3: 2nd Timing Sequence

Signal sequencing for the second possible sequence is shown in Figure 3 above. BF_CUT goes from LOW to HIGH and SLP goes from HIGH to LOW, 30µsec to 65µsec (T3) later. When BF_CUT goes HIGH, PDR and NDR go LOW and the 2.5V LDO turns ON. When SLP goes LOW, PDR and NDR return to HIGH and the 2.5V LDO turns OFF. BF_CUT will stay HIGH and SLP will stay low for an undetermined time, after which SLP will go HIGH. A

minimum of 1msec (T4) later, BF_CUT will go LOW and the system is back at the end of the power up sequence. Typical measured values of T4 are ~250msec. During all transitions, the propagation delays, rise and fall times, and going into regulation times for PDR, NDR and 2.5V LDO are described in the Electrical Characteristics on pages 2 and 3. The second sequence can start at any time after the end of the power up sequence.

Pin Configurations

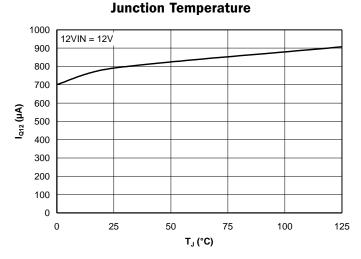

Ordering Information

Part Number ⁽¹⁾	Package		
SC1545CS.TR	SO-8		

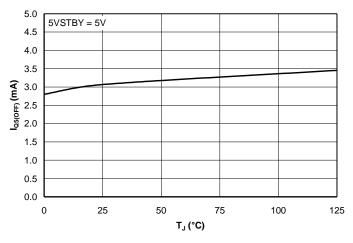
Note:

(1) Only available in tape and reel packaging. A reel contains 2500 devices.

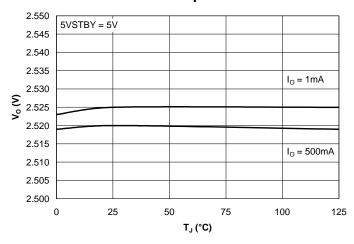
Block Diagram


Pin Descriptions

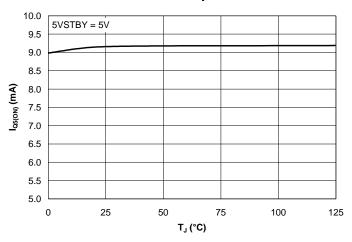
Pin	Pin Name	Pin Function
1	VO	LDO 2.5V output.
2	GND	Logic and power ground.
3	PDR	Gate drive signal for P-channel MOSFETs.
4	NDR	Gate drive signal for N-channel MOSFETs.
5	SLP	Control input #1.
6	BF_CUT	Control input #2.
7	12VIN	+12V input supply. Used for generating NDR only.
8	5VSTBY	+5V input supply.


Typical Characteristics

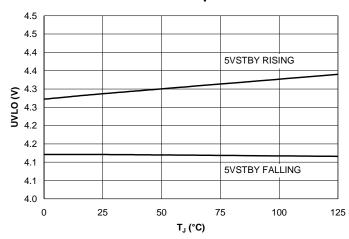
12VIN Quiescent Current vs.


5VSTBY Quiescent Current (OFF)

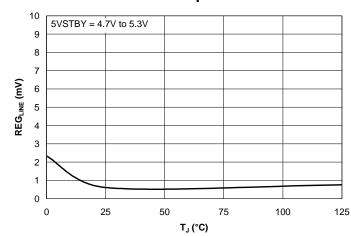
vs. Junction Temperature


LDO Output Voltage vs.

Junction Temperature

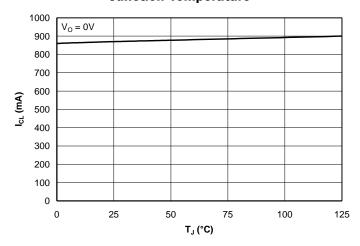

5VSTBY Quiescent Current (ON)

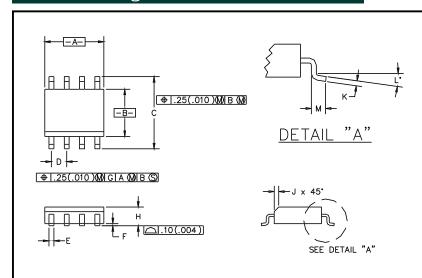
vs. Junction Temperature


5VSTBY Under Voltage Lockout

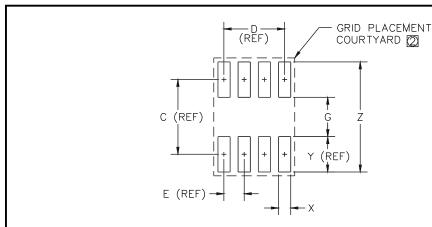
vs. Junction Temperature

LDO Line Regulation vs.


Junction Temperature


Typical Characteristics (Cont.)

LDO Current Limit vs. Junction Temperature


Outline Drawing - SO-8

JEDEC REF: MS-012AA

DIMENSIONS						
DIM	INCHES		M	NOTE		
ייועורטן	MIN	MAX	MIN	MAX		
Α	.188	.197	4.80	5.00		
В	.149	.158	3.80	4.00		
С	.228	.244	5.80	6.20		
D	.050	BSC	1.27	BSC		
E	.013	.020	0.33	0.51		
F	.004	.010	0.10	0.25		
Н	.053	.069	1.35	1.75		
J	.011	.019	0.28	0.48		
K	.007	.010	.19	.25		
L	0°	8°	0°	8°		
M	.016	.050	0.40	1.27		

Land Pattern - SO-8

DIMENSIONS 🛈						
DIMN	INCHES		MM		NOTE	
DIM	MIN	MAX	MIN	MAX	NOIL	
С	_	.19	_	5.00	_	
D	_	.15	_	3.81	_	
Ε	_	.05	_	1.27	_	
G	.10	.11	2.60	2.80	_	
Χ	.02	.03	.60	.80	_	
Y	_	.09	_	2.40	_	
Ζ	_	.29	7.20	7.40	_	

- ② GRID PLACEMENT COURTYARD IS 12x16 ELEMENTS
 (6 mm X 8mm) IN ACCORDANCE WITH THE
 INTERNATIONAL GRID DETAILED IN IEC PUBLICATION 97.
- CONTROLLING DIMENSION: MILLIMETERS

Contact Information

Semtech Corporation Power Management Products Division 652 Mitchell Rd., Newbury Park, CA 91320 Phone: (805)498-2111 FAX (805)498-3804