

- Ideal Front-End Filter for European Wireless Receivers
- Low-Loss, Coupled-Resonator Quartz Design
- Simple External Impedance Matching
- Surface-Mount, F-11 Surface Mount Type

SF868S1

Absolute Maximum Rating (Ta=25°C)				
Parameter	Rating	Unit		
CW RF Power Dissipation	+ 0	dBm		
DC Voltage VDC	0	V		
Operating Temperature Range	-45 ~ +85	°C		
Storage Temperature Range	-45 ~ +85	°C		

Specifications						
Parameter		Minimum	Typical	Maximum	Unit	
Frequency (25°C) Nominal Frequency	fc	NS	868.30	NS	MHz	
Minimum Insertion Loss Attenuation 868.00 ~ 868.78MH		-	2.7	4.7	dB	
Passband (Relative to αmin)						
868.00 ~ 868.60 MHz	-	-	1.0	3.0	dB	
867.90 ~ 868.70 MHz	-	-	1.5	6.0	dB	
Attenuation (Relative to αmin)						
10.00 ~ 700.00 MHz	-	50	55	-	dB	
700.00 ~ 830.00 MHz	-	35	45	-	dB	
830.00 ~ 850.00 MHz	-	32	40	-	dB	
850.00 ~ 865.02 MHz	-	25	30	-	dB	
871.00 ~ 874.50 MHz	-	11	16	-	dB	
874.50 ~ 883.00 MHz	-	22	27	-	dB	
883.00 ~ 900.00 MHz	-	30	35	-	dB	
900.00 ~ 1000.00 MHz	-	35	40	-	dB	
Temperature Coefficient of Frequency		-	-0.03	-	ppm/K ²	
Turnover Temperature		15	-	35	°C	
Frequency Aging Absolute Value during the First Year	fA	-	-	10	ppm/yr	
DC Insulation Resistance Between any Two Pins		1.0	-	-	ΜΩ	

NS = Not Specified

Notes

- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The frequency fc id the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2 : 1. Typically, foscillator or ftransmitter is less than the resonator fc.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4. Unless noted otherwise , case temperature $Tc = +25^{\circ}C \pm 2^{\circ}C$.
- The design, manufacturing process, and specifications of this device are subject to change without notice.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_c , IL, 3dB bandwidth, f_c versus T_c , and C_0 .
- 7. Turnover temperature, T_o, is the temperature of maximum (or turnover) frequency, f_c, The nominal center frequency at any case temperature, T_c, may be calculated from: f = f_c [1-FTC (To Tc)²]. Typically, oscillator To is 20° less than the specified resonator T_o.
- 8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground. The measurement includes case parasitic capacitance.

Package Outline (F-11SMD)

Pin	Connection		
1	1 Input/Output 2 Ground		
2			
3	Ground		
4	Output/Input		

Phone: +86 10 6301 4184 Fax: +86 10 6301 9167 Email: sales@vanlong.com Web: http://www.vanlong.com