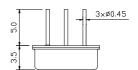
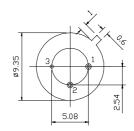


- Ideal Front-End Filter for USA Wireless Receivers
- Low-Loss, Coupled-Resonator Quartz Design
- Simple External Impedance Matching
- Rugged, Hermetic, Low Profile TO-39 Package

SF319


Absolute Maximum Rating (Ta=25°C)					
Parameter	Rating	Unit			
CW RF Power Dissipation	+ 0	dBm			
DC Voltage VDC	± 30	V			
Operating Temperature Range	-10 ~ +65	°C			
Storage Temperature Range	-35 ~ +85	°C			


Specifications							
	Parameter	Sym	Minimum	Typical	Maximum	Unit	
Frequency (25°C)	Nominal Frequency	fc	NS	319.500	NS	MHz	
	Tolerance from 315.000 MHz	Δfc	-	±75	-	KHz	
Insertion Loss		IL	-	1.7	3.5	dB	
3dB Bandwidth		BW3	500	600	800	KHz	
Temperature Stability	Turnover Temperature	То	15	25	35	°C	
	Turnover Frequency	fo	-	Fc+2.7	-	KHz	
	Frequency Temperature Coefficient	FTC	-	0.037	-	ppm/°C	
Frequency Aging	Absolute Value during the First Year	fA	-	-	10	ppm/yr	
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	ΜΩ	
Attenuation	fc - 21.4MHz (Image)	-	40	50	-	dB	
	Fc - 10.7MHz (LO)	-	15	40	-	dB	
	Ultimate	-	-	80	-	dB	
Shunt Capacitance		-	-	9	-	pF	

NS = Not Specified

Notes Package Outline (TO-39-3)

- Frequency aging is the change in fc with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture, which is connected to a 50 Ω test system (VSWR ≤ 1.2:1). The test fixture's L and C are adjusted for minimum insertion loss at the filter center frequency. fc Note the insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality. The optimum impedance matching component values are dependent on circuit parasitic losses.
- 3. The frequency fc is defined as the midpoint between the 3dB frequency.
- Unless notes otherwise, specifications\ apply over the entire specified operating temperature range.
- The design, manufacturing process, and specifications of this device are subject to change without notice.
- 6. The turnover temperature, To is the temperature of maximum (or turnover) frequency, fc the nominal frequency at any case temperature, TC, may be calculated from : $f = fc [1-FTC(To-Tc)^2]$.

Pin	Connection
1	Input/Output
2	Output/Input
3	Ground

All dimensions are in mm