HAMAMATSU

TECHNICAL DATA

CURRENT OUTPUT TYPE MOS LINEAR IMAGE SENSORS S3902, S3903 SERIES

High UV Sensitivity, 0.5mm Pixel Height, Excellent Photometric Capabilities, Low Power Consumption

FEATURES

- Medium wide photosensitive area
 Pixel pitch: 50μm (S3902), 25μm (S3903)
 Pixel height: 0.5mm
- High UV sensitivity with good stability
- Excellent photometric capabilities
 Low dark current and high saturation charge
 Good linearity
 Wide dynamic range
- Low power consumption : less than 1mW
- Start pulse and clock pulses are CMOS logic compatible

APPLICATIONS

- Multichannel spectrophotometry
- Image readout systems

DESCRIPTION

By applying NMOS technology to the manufacture of self-scanning linear photodiode arrays, Hamamatsu can offer higher performance and increased flexibility to photometric instrument manufacturers. The new design achieves high UV sensitivity without deterioration even with extended UV exposure. Application is simplified because of low power consumption and a single video output line. All members of the series are pin compatible.

The S3902 and S3903 series MOS linear image sensors feature good linearity over a wide dynamic range and have low power consumption. They have a photosensitive area with a pixel height of 0.5mm and a pixel pitch of $50\mu m$ (S3902) or $25\mu m$ (S3903). Each series is available with three different number of pixels; 128, 256 and 512 for the S3902 series, 256, 512 and 1024 for the S3903 series.

MOS LINEAR IMAGE SENSORS S3902, S3903 SERIES

MAXIMUM RATINGS

Parameters	Symbols	S3902, S3903 Series	Units
Supply Clock Amplitude	Vφ	15	V
Operating Temperature ①	Topr	-40 to +65	°C
Storage Temperature	Tstg	-40 to +85	°C

① No dew

ELECTRICAL CHARACTERISTICS (Ta=25°C)

Parameters	Symbols	S3902 Series			S3903 Series			(criping hidges)
T didnieters	Syllibols	Min.	Тур.	AND THE RESIDENCE AND ADDRESS OF THE PARTY O		Тур.		Units
Video Bias Voltage ①	V _b	1.5	Vφ-3.0	Vφ-2.5	1.5	The second secon	Vφ-2.5	V
Saturation Control Gate Voltage	Vscg	_	0	_	_	0	_	V
Saturation Control Drain Voltage	V _{scd}	_	Vb	_	_	Vb	_	V
Start Pulse Voltage (ϕ st) ① -High	V _{φS} (H)	4.5	Vφ	10	4.5	Vφ	10	V
-Low	Vφ _S (L)	0	_	0.4	0	_	0.4	V
Clock Pulse Voltage (ϕ 1, ϕ 2) -High	Vφ1, Vφ2(H)	4.5	5	10	4.5	5	10	V
-Low	Vφ1, Vφ2(L)	0		0.4	0	_	0.4	V
Start Pulse Rise/Fall Times (\$\phi\$st)	$t_r\phi_S$, $t_f\phi_S$	_		500	_	_	500	ns
Start Pulsewidth (ϕ st)	t _{pw} ϕ s	200		_	200	_	_	ns
Clock Pulse Rise/Fall Times (\$\phi_1\$, \$\phi_2\$)	$t_r\phi_1, t_r\phi_2,$	_	_	500	_	-	500	ns
Clock Pulsewidth (\$\phi_1\$, \$\phi_2\$)	$t_{f\phi_1}, t_{f\phi_2}$ $t_{pw\phi_1}, t_{pw\phi_2}$	200			200			200
Start Pulse (ϕ st) and Clock Pulse (ϕ 2) Overlap		200	_		200			ns
Clock Pulse Space	X1, X2	0		_	0			ns
Data Rate ②	f	0.1		2000	0.1		2000	kHz
Video Delay Time (50% of saturation) @		_	70 (-	128Q) –	_	80 (-	-256Q) –	ns
	tvd		,	·256Q) –	_	,	-512Q) –	ns
			,	512Q) –			·1024Q) —	ns
Clock Pulse Line Capacitance	Сф	_		128Q) –			256Q) –	pF
(ϕ_1, ϕ_2) at 5V bias		_		256Q) –			·512Q) –	рF
				512Q) –	_		1024Q) —	рF
Saturation Control Gate Line	C _{scg}	_		128Q) –	_		256Q) –	pF
Capacitance (V _{SCG}) at 5V bias				256Q) –	_	,	512Q) –	pF
		_		512Q) –	_	,	1024Q) —	ρF
Video Line Capacitance	C _V	_	·	128Q) –			256Q) –	pF
at 2V bias		_		256Q) —	_		512Q) –	рF
		_	20 (-5	512Q) –	_		1024Q) —	рF
Power Consumption	Р	_	_	1	_		1	mW

① $V\phi$ is supply clock amplitude. ② Measured with a C4069 driver/amplifier circuit.

ELECTRO-OPTICAL CHARACTERISTICS (Ta=25°C)

Parameters	Symbols (%)	S3902 Series			S3903 Series			
Falailleters	Symbols	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Pixel Pitch		_	50	_	_	25	_	μm
Pixel Height		_	0.5	_	_	0.5	_	mm
Photodiode Dark Current ①	ID	_	0.08	0.15	_	0.04	0.08	рА
Photodiode Capacitance ①	Cph	_	4		_	2	_	pF
Spectral Response Range (10% of peak)	λ	20	00 to 10	00	20	0 to 10	00	nm
Peak Sensitivity Wavelength	λр	_	600	_	_	600	_	nm
Saturation Exposure ① ②	E _{sat}	_	180	_	_	180		mlx•s
Saturation Charge ①	Q _{sat}	_	10	_	_	5	_	рС
Sensitivity Uniformity (50% of satura-		_	_	±3		_	±3	%
tion, excluding first and last elements)							±3	70

① Video bias voltage: 2.0V, Supply clock amplitude: 5.0V

Figure 3: Typical Spectral Response

Figure 4: Output Charge vs. Exposure

^{2 2856} k Tungsten lamp

MOS LINEAR IMAGE SENSORS S3902, S3903 SERIES

DIMENSIONAL OUTLINES (Unit: mm)

S3902-128Q S3903-256Q

S3902-256Q S3903-512Q

S3902-512Q S3903-1024Q

* Optical distance from the outer surface of the quartz window to the chip surface.

Mechanical Specifications

Parameters	S3902 -128Q	S3902 -256Q	S3902 -512Q	S3903 -256Q	S3903 -512Q	S3903 -1024Q	Units
Number of Pixels	128	256	512	256	512	1024	harmonia tere
Ceramic Length	31.	31.75		31.75		40.6	mm
Number of Pins		31.75 40.6			22		
Window Material ①		Quartz			Quartz		
Net Weight	3.	.0	3.5	3		3.5	

① Fiber optic window is available

PINOUT AND RECOMMENDED OPERATING CONDITIONS

V_{SS}, V_{Sub} and NC should be grounded.

T		
Terminals	Input or Output	Description
φ1, φ2	Input (CMOS logic compatible)	Pulses for operating the MOS shift register. As the video output signal is obtained synchronized with the rise of ϕ_2 , the video data rate is equal to the clock pulse frequency.
φst	Input (CMOS logic compatible)	Pulse to start operation of the MOS shift register. The time interval between start pulses is equal to the signal accumulation time.
V _{SS}	Passive node	Connected to the anode of each photodiode. This should be grounded.
V _{scg}	Input	Used for restricting blooming. This should be set at the base line of each input pulse and is normally the ground level.
V _{scd}	Input	Used for restricting blooming. This shoud be biased at a voltage equal to the video bias at all times.
ACTIVE VIDEO	Output	Video output signal. A positive voltage should be applied to the video line which connects the photodiode cathodes so that each photodiode is reverse-biased. It is recommended that the video bias be 2V when the amplitude of ϕ 1, ϕ 2 and ϕ st is at 5V.
DUMMY VIDEO	Output	This has the same structure as the active video, but is not connected to the photodiodes, so only spike noise is output. It should be biased at a voltage equal to the active video line. When in use otherwise, it should be open circuited.
V _{sub}	Passive node	Connected to the silicon substrate. This should be grounded.
EOS	Output (CMOS logic compatible)	This should be pulled up to 5V using a $10k\Omega$ resistor. Negative polarity. The end of scan signal is obtained synchronized with $\phi 2$ right after the last photodiode is addressed.
NC		No connection. These should be grounded.

DRIVER CIRCUIT

Driver Circuit

No DC supply voltage is required for driving the S3902 and S3903 series MOS linear image sensors. The V_{SS} , V_{SUb} and all NC terminals should be grounded, however. Driving the MOS shift register requires a start pulse (ϕ st) and two-phase clock pulses (ϕ 1, ϕ 2). The polarities of ϕ st, ϕ 1 and ϕ 2 are positive and these pulses are CMOS logic compatible.

 ϕ 1 and ϕ 2 can be either fully separated or in the complementary relation. However, the overlap should not exist at the rise or fall edge between ϕ 1 and ϕ 2. In other words, ϕ 1 and ϕ 2 must not be at the high level at the same time. The pulsewidth of ϕ 1 and ϕ 2 must be longer than 200 ns. Since the photodiode signal is obtained at the rise of every ϕ 2, the clock pulse frequency determines the video data rate.

The amplitude of ϕ st should be equal to that of ϕ 1 and ϕ 2. The shift register starts to read out the signal with the high level of ϕ st, so the time interval of each ϕ st determines the signal accumulation time. The pulsewidth of ϕ st must also be longer than 200ns and must be overlapped with ϕ 2 for at least 200ns. Moreover, in order to start the shift register normally, ϕ 2 must be changed only once from the high level to the low level during the high level of ϕ st. The timing diagram for each pulse is shown in Figure 5.

• End of Scan (EOS)

By wiring the \overline{EOS} terminal to 5V using a pull-up resistor of $10k\Omega$, the end of scan signal is obtained, synchronized with $\phi 2$ right after the last photodiode is addressed.

Signal Readout Circuit

Signal readout methods consist of the current-detection mode (current-voltage conversion mode) using a resistive load and the current-integration mode using a charge amplifier. In either method, a positive bias must be applied to the video line because the photodiode anodes of a MOS linear image sensor are at 0V (V_{SS}). Figure 6 shows the video bias voltage margin. Higher supply clock

amplitude allows larger video bias and saturation charge. Conversely, if the video bias is set at a low level with higher supply clock amplitude, the fall time of the video output waveform can be shortened. It is recommended that the video bias be set at 2V when the amplitude of ϕ_1 , ϕ_2 and ϕ_3 st is 5V.

HAMAMATSU

To obtain a good output linearity, the current-integration mode is suggested. In this mode, immediately before each photodiode is addressed, the integration capacitance is reset at the reference voltage level, and when the address switch is turned on, the signal charge is accumulated in the integration capacitance. Figure 7 shows an example of the current-integration circuit and the pulse timing. To obtain a stable output, the rise edge

of the reset pulse should be delayed by at least 50 ns from the fall edge of ϕ 2.

Hamamatsu provides driver/amplifier circuits; the C4070 for the current-integration mode and the C4069 for the current-voltage conversion mode. In addition, the C4091 pulse generator is available, which supplies these driver/amplifier circuits with a master start pulse and a master clock pulse.

Figure 6: Video Bias Voltage Margin

Figure 7: Recommended Readout Circuit and Timing Diagram

Operation for Anti-blooming

When light higher than the saturation exposure strikes the sensitive area, even partially, the photodiode in a MOS linear image sensor cannot accumulate a signal charge exceeding the saturation charge amount. The excess charge begins to overflow into the video line, thus causing deterioration of the signal purity. In order to eliminate this phenomenon, the saturation control drain should be set at a voltage equal to the video bias, and the gate should be grounded. Under normal operating conditions, the MOS linear image sensor will show an excellent antiblooming characteristic.

When a MOS linear image sensor is used at a light level lower than the saturation exposure, the same bias condition is applicable.

However, under extremely high contrast conditions, a voltage equal to the video bias should be applied to the saturation control drain. Also, a bias voltage (less than 1V) should be applied to the saturation control gate. The larger the bias voltage for the saturation control gate, the higher the saturation control function will be. However, a larger bias voltage also causes a decrease in the saturation charge amount.

APPENDIX

1) Operation for all photodiodes reset:

In normal operation, the charge accumulated in the photodiode is reset when the signal is read out. For the S3902 and S3903 series, the signal charge can be reset at a line other than the signal readout. This is done by adding an appropriate pulse to the saturation control gate. The amplitude of this pulse should be equal to ϕ 1, ϕ 2 and ϕ st, and the pulsewidth should be longer than 5μ s.

When the saturation control gate is set at the high level, all photodiodes are reset simultaneously at the potential of the saturation control drain. (Therefore, the saturation control drain should be set at the same potential as the video bias, and is typically 2V.) On the contrary, when the saturation control gate is set at the low level, the signal charge accumulates in the photodiode without a reset being carried out.

2) Dummy video:

The S3902 and S3903 series have a dummy video line to eliminate the spike noise in the video output waveform. A video signal with lower spike noise can be obtained by the differential amplification of the active video line and the dummy video line outputs. But, in a normal operation, the dummy video line needs not to be used. Leave it unconnected.