Date: April, 2000

155.52Mb/s

(SCM7301-XC)

other _____

Technical Specification for

Optical Transceiver Module

SCM7301-XC

622.08Mb/s

Short Haul Intermediate Reach Single 5.0 V 1.3 µm	Long Haul Long Reach Single 3.3 V	other other other	
Transmitter	Receiver (2R / 3R)	Transceiver (
• 9	SUMITOMO ELEC	TRIC	
SUMITOMO Electric reserves the inafter without prior notice.	right to make changes i	n the specification described here-	
#Safety Precaution Symbols This s persons or damage to properties for appropriate use with these symbols before reading this specification.	of the product. The symbols and	symbols to prevent possible injury to operator or other definitions are as shown below. Be sure to be familia	
▲ Warning Wrong operation without fo	ollowing this instruction may lead	to human death or serious injury.	
▲ Caution Wrong operation without for	ollowing this instruction may lead	to human injury or property damage.	
Example of picture symbols indicates prohibit	ion of actions. Action details are	explained nearby.	
indicates compul	sory actions or instructions. Actio	n details are explained near by.	

-1/8-

Date: April, 2000

1. General

SCM7301-XC is a series of compact and high speed performance digital optical transceiver module ideally designed for versatile high speed network applications. 1300nm high speed InGaAsP-LD and InGaAs PIN-PD are provided as a light source and a detector, respectively. Transceiver module has PC board mountable package with electrical and optical interfaces.

* Data Rate 155.52 Mbps, NRZ

* Duty Cycle 50%

* Power Supply Voltage Single +3.3V

* Electrical Interface PECL

* Fiber Coupled Power -8 ~ -15dBm (Typ. -11dBm) for SMF

* Sensitivity -8 ~ -28dBm (Typ. -37dBm)

* Connector Interface SC Duplex Connector

The features of SCM7301-XC are listed below.

* Features Low Power Supply Voltage / Low Power Consumption

Plastic Molded Package Multi-sourced Footprint

Transmitter..... Uncooled Laser with Automatic Power Control IC

Optical Output Shut-down (Disable)

Laser Bias Current Monitor / Rear Facet Monitor

Class 1 Laser Product (IEC 825-1 and FDA 21 CFR 1040.10 and 1040.11)

Receiver...... Wide Dynamic Range

Built-in Clock Recovery (including SAW filter)

ITU-T G.957 / G.958 and Bellcore TA-NWT-000253 Compliant

Signal Detect (FLAG) Function

2. Block Diagram

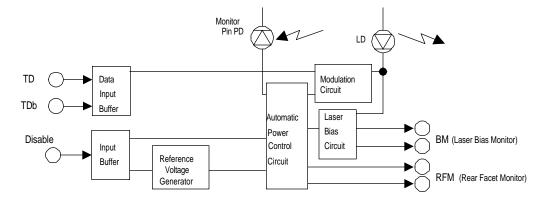


Figure 1-1. Block Diagram (Transmitter)

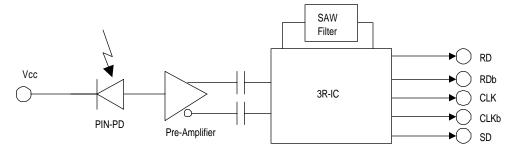


Figure 1-2 Block Diagram (Receiver)

Date: April, 2000

3. Package Dimension

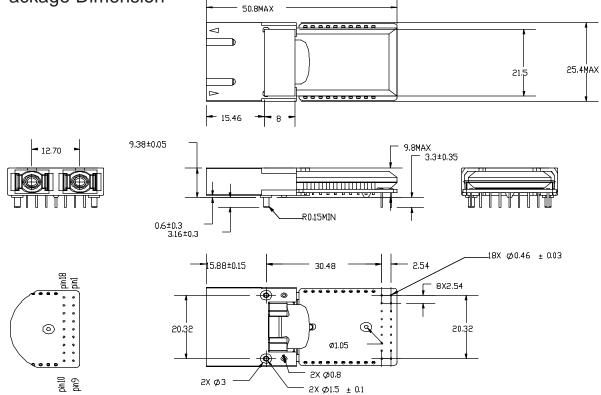


Figure 2. Package Dimension

∆ Caution

Do not disassemble this product. Otherwise, failure, electrical shock overheating or fire may occur.

Handle the lead pin carefully. Use assisting tools or prospective aids as required. A lead pin may injure skin or human body

4. Pin Assignment

No.	Symbol	Function
1	N/C	Non Connection (Internally)
2	N/C	Non Connection (Internally)
3	RCLKb	Differential Clock Output (Negative)
4	RCLK	Differential Clock Output (Positive)
5	BM(-)	Monitoring pin for LD Bias Monitor
6	BM(+)	Monitoring pin for LD Bias Monitor
7	Disable	LD Disable Input
8	RFM(+)	Monitoring pin for Rear Facet Monitor
9	RFM(-)	Monitoring pin for Rear Facet Monitor
10	Veetx	Power Supply (-) for Transmitter : Connected to GND
11	TD	Transmitter Differential Data (Positive)
12	TDb	Transmitter Differential Data (Negative)
13	Vcctx	Power Supply (+) for Transmitter: Connected to +3.3V
14	Vccrx	Power Supply (+) for Receiver : Connected to +3.3V
15	FLAG(SD)	FLAG (Signal Detect)
16	RDb	Received Differential Data (Negative)
17	RD	Received Differential Data (Positive)
18	Veerx	Power Supply (-) for Receiver : Connected to GND or additional functions in the future

Date: April, 2000

5. Absolute Maximum Ratings

Parameter	Symbol	min.	Max	Unit	Note
Storage Case Temperature	Ts	-40	85	°C	1
Operating Case Teperature	Tc	-5	70	°C	1, 2
		-40	85	°C	1, 3
Supply Voltage	Vcc-Vee	0.0	4.0	V	4
Input Voltage	Vi	Vee	Vcc+0.5	V	5
Lead Soldering (Temperature)			260	°C	6
(Time)			10	sec.	

Note 1. No condensation allowed. 2. SCM7301-XC 3. SCM7301-XC-W 4. Vcc>Vee, Vcc=+3.3V, Vee=GND 5. TD, TDb, Disable 6. Measured on lead pin at 2mm (0.079in.) off the package bottom

Marning

A

Use the product with the rated voltage described in the specification. If the voltage exceeds the maximum rating, overheating or fire may occur.

 \bigcirc

Do not store the product in the area where temperature exceeds the maximum rating, where there is too much moisture or dampness, where there is acid gas or corrosive gas, or other extreme conditions. Otherwise, failure, overheating or fire may occur.

6. Electrical Interface

(Unless otherwise specified, Vcc-Vee = 3.14 to 3.47 V and all operating temperature shall apply.)

6-1. Transmitter side

Parar	meter	Symbol	min.	Тур.	Max.	Unit	Note
Supply Voltage		Vcc-Vee	3.14	3.30	3.47	V	
Supply Current		ldtx		70	140	mA	1, 2, 3
Input Voltage	High	Vih	Vcc-1.17		Vcc-0.73	V	4, 5
TD, TDb	Low	Vil	Vcc-1.95		Vcc-1.45	1	
Input Current	High	lih	-10		150	μΑ	4, 5
TD, TDb	Low	lil	-10		10	1	
Signal Input Rise / Fa	all Time				0.5	nsec.	6
Disable Input Voltage)	Vdi	Vee+2.0		Vcc	V	7
Disable Input Current	İ	ldi	-10	140	200	μΑ	
LD Bias Monitor Volta	age	Vbm	0.01		0.50	V	5, 8
Rear Facet Monitor V	oltage	Vrfm	0.01		0.20	V	5, 8

Note 1. Input bias current is not included. 2. 50% duty cycle data

- 3. 155.52Mbps 4. Vcc-Vee=3.3V 5. Tc=25°C 6. 20~80%
- 7. The transmitter is enabled as default state and requires an external voltage only to disable. (Refer to Section 8. Relation between Disable Input Voltage and Optical Output Power)
- 8. The Laser Bias and Rear Facet Monitor currents are calculated as ratios of the corresponding voltages to their current-sensing resistors, 10Ω and 200Ω , respectively (See Figure 3). Upon measuring or utilzing these values, please use a device whose impedance is high enough (>1M Ω) compared with those resistors.

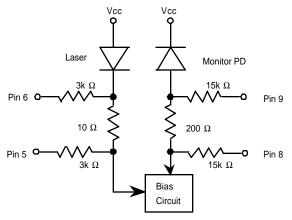


Figure 3 Monitor Circuit Schematic Diagran

Date: April, 2000

6-2. Receiver side

Param	eter	Symbol	min.	Typ.	Max.	Unit	Note
Supply Voltage		Vcc-Vee	3.14	3.30	3.47	V	
Supply Current		Idrx		115	160	mA	1,2
Data & Clock	High	Voh	Vcc-1.10		Vcc-0.86	V	3
Output Voltage	Low	Vol	Vcc-1.86		Vcc-1.62		
FLAG	High	Voh	2.40		Vcc	V	4
Output Voltage	Low	Vol	Vee		0.40		
Clock Rise / Fall Time	·	Trc / Tfc			700	psec.	5
Data Rise / Fall Time		Trd / Tfd			1000	psec.	
Flag Assert Time		Та			100	μsec	6
Flag Deassert Time		Td	2.3		100	μsec	
Clock Sampling Point		Tcsp	2.60	3.10	3.60	nsec.	7
Clock Jitter (rms)		Tjc			64	psec.	2, 3, 8
Clock Duty		Cduty	45	50	55	%	1
Data Jitter (rms)		Tjd			100	psec.	1

Note 1. Output current is not included. 2. Measured at the bit rate of 155.52Mbps, PRBS 2/23-1, NRZ

- 3. Vcc=+3.3V, Tc=25°C, Output load resistance RI=50Ω to Vcc-2V for RD, RDb, RCLK and RCLKb
- 4. CMOS interface
- 5. 20~80%, Input capacitance and stray capacitance of measuring devices should be less tham 2pF
- 6. Refer to Figure 4. 7. Phase difference between rising edge of RD and Rising edge of RCLK. Refer to Figure 4. 8. Optical Input Power: -28.0 ~ -8.0dBm

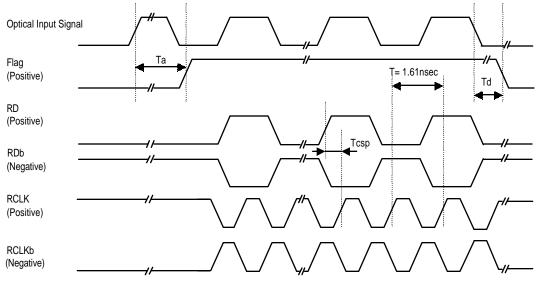
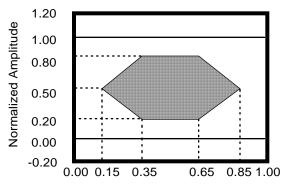


Figure 4. Timing Chart

Date: April, 2000


7. Optical Interface

(Unless otherwise specified, Vcc-Vee = 3.14 to 3.47 V and all operating temperature shall apply.)

7-1. Transmitter side

Parameter	Symbol	min.	Тур.	Max.	Unit	Note	
Average Output Power	Po	-15.0		-8.0	dBm	1	
Extinction Ratio	Er	8.2			dB	1	
Center Wavelength	λς	1261		1360	nm		
Spectral Width (RMS)	Δλ	$\Delta\lambda$ 7.7 nm					
Eye Mask for Optical Output		Refer to Figure 5					

Note 1. Measured at 155.52Mbps PRBS2^23-1, 50% duty cycle data

Relation between Input Signal and Optical Output Signal

Input Signal		Optical Output Siganl
TD	TDb	
High	Low	ON (High)
Low	High	OFF (Low)
High	High	Undefined
Low	Low	Undefined

Figure 5. Optical Pulse Mask with Fourth Order

Bessel-Thomson Filter Specified in ITU-T G.95

M Warning

Do not look at the laser beam projection area (e.g. end of optical connector) with naked eyes or through optical equipment while the power is supplied to this product. Otherwise, your eyes may be injured.

7-2. Receiver side

Parameter	Symbol	min.	Тур.	Max.	Unit	Note
Bit Rate Range	-	1	55.52 +/- 50pp	m	Mbps	
Center Wavelength	-	1261		1580	nm	
Minimum Sensitivity	Pmin		-37.0	-28.0	dBm	1, 2
Overload	Pmax	-8.0			dBm	1, 2
Consecutive Identical Digit	CID	72	100		bits	3
Flag Assert Level	Pa	-50	-42	-34	dBm	2, 4
Flag deassert Level	Pd	-50	-43	-34	dBm	
Note 1 RER-10A-10						

^{2.} Measured at the bit rate of 155.52Mbps, PRBS 2^23-1, NRZ

8. Relation between Disable Input Voltage and Optical Output Power

Disable Input Voltage	Optical Output Power
"L" (Vee ~ Vee+0.4V)	Enabled
"H" (Vee+2.0 ~ Vcc)	Disabled (<-45dBm)

Note. Enabled for no Disable input (pin 7 opened)

^{3.} Optical Input Power: -28.0 \sim -8.0dBm, Duty 50% input signal

^{4.} Refer to Figure 4

Date: April, 2000

9. Reliability Test (Under qualification)

Bellcore TA	-NWT-000983 Is	sue 2, December 19	93					
Heading	Test	Reference	Condition	Samplir			SEI F	
				LTPD	SS	С	SS	F/C
Mechanical	Mechanical	MIL-STD-883	Condition B					
Integrity	Shock	Method 2002	5 times/axis					
			500G, 1.0 ms	20%	11	0		
			1,500G, 0.5ms	20%	11	0	11	TBD
	Vibration	MIL-STD-883	Condition A	20%	11	0	11	TBD
		Method 2007	20 G					
			20-2,000 Hz					
			4 min/cycle; 4 cycles/axis					
	Thermal Shock	MIL-STD-883	ΔT=100°C	20%	11	0	11	TBD
		Method 1011						
	Solderability	MIL-STD-883	(steam aging not required)	20%	11	0	11	0
		Method 2003						
	Fiber Pull		1 Kg; 3 times;5sec.	20%	11	0		
			2 Kg; 3 times; 5sec.	20%	11	0		
Endurance	Accel. Aging	(R)-453	+85C; rated power					
	(High Temp.)	Section 5.18	>5,000hrs.		25		25	TBD
			>10,000hrs.		10			
	High Temp.		max. storage T (T=85°C)	20%	11	0		
	Storage		>2,000					
	Low Temp.		min. storage T (T=-40°C)	20%	11	0	11	TBD
	Storage		>2,000					
	Temperature	Section 5.20	- 40°C to +85°C					
	Cycling		400 times pass/fail	20%	11	0		
			500 times for info.		11			
			500 times pass/fail	20%	11	0	11	TBD
			1000 times for info.		11		11	TBD
	Damp Heat	MIL-STD-202 M103	40°C , 95%, 56days	20%	11	0	11	TBD
	(if using epoxy)	or IEC 68-2-3	or 85°C /85%RH 2,000hrs.	20%	11	0		
	Cyclic Moisture	Section 5.23		20%	11	0	11	TBD
	Resistance							
Special	Internal	MIL-STD-883	< 5,000 ppm	20%	11	0	11	TBD
Tests	Moisture	Method 1018	water vapor					
	Flammability	TR357:Sec. 4.4.2.5						OK
	ESD Threshold	Section 5.22			6		6	TBD

Date: April, 2000

10. Laser Safety

This product uses a semiconductor laser system and is a laser class 1 product acc. FDA, complies with 21CFR 1040. 10 and 1040.11. Also this product is a laser class 1 product acc. IEC 825-1.

11. Other Precaution

Under such a strong vibration environment as in automobile, the performance and reliability are not guaranteed.

The governmental approval is required to export this product to other countries. To dispose of these components, the appropriate procedure should be taken to prevent illegal exportation.

This module must be handled, used and disposed of according to your company's safe working practice.

Warning

Be sure to carry out correct soldering for connection to peripheral circuits in order to prevent contact failure or short-circuit. Otherwise, a strong laser beam may cause eye injury, overheating or fire.

Do not put this product or components of this product into your mouth. This product contaions material harmful to health.

Caution

Be sure to turn the power off when you touch this product connected to the printed circuit boards. Otherwise, electric shock may occur

Dispose this product or equipment including this product properly as an industrial waste according to the regulations.

12. Ordering Information

Ordering Number	Connector type	Operating Temperature
SCM7301-XC	SC Duplex Connector	-5 ~ 70°C
SCM7301-XC-W	SC Duplex Connector	-40 ~ 85°C

13. For More Information

U.S.A. Sumitomo Electric Lightwave Corp.

78 Alexander Drive

Research Triangle Park, NC 27709

Tel. (919)541-8100 Fax. (919)541-8376

E-mail: info@sel-rtp.com

http://www.sel-rtp.com

Europe

Sumitomo Electric Europe Ltd. Unit 11, Magnolia House

Spring Villa Park, Spring Villa Road Edgware, Middlesex, HA8 7EB,

United Kingdom Tel. (081)905-6160 Fax. (081)905-6195 <u>Japan</u>

Sumitomo Electric Industries, Ltd. (International Business Division) 3-12, Moto-Akasaka 1-chome Minato-ku Tokyo 107-8468

Tel. (03)3423-5771 Fax. (03)3423-5099

E-mail: product-info@yfocs.sei.co.jp

http://www.sei.co.jp/Electro-optic/eopd home e.html