July, 2000 (SCM6012-GL) # Technical Specification for Optical Transceiver Module # **SCM6012-GL** | 155.52Mb/s | 622.08Mb/s | other | |--|-------------------------------------|---| | Short Haul Intermediate Reach | Long Haul
Long Reach | other | | Single 5.0 V | Single 3.3 V | other | | 1.3 µm | 1.55 μm | other | | Transmitter | Receiver | Transceiver | | | (2R / 3R) | (V 2R / 3R) | | | | , | | | | | | A CI | JMITOMO ELECT | TRIC | | * 30 | DIVITIOIVIO ELEG | INIC | | Oursite as a Fleeting as a sure the girth | A to moder about the in- | | | Sumitomo Electric reserves the righ | it to make changes in this | specification without prior notice. | | #0-fat Dragovijan 0 | | | | #Safety Precaution Symbols This specification. Which is specification or symbols before reading this specification. | · | ymbols to prevent possible injury to operator or other definitions are as shown below. Be sure to be familiar | | ⚠ Warning Wrong operation without foll | owing this instruction may lead | to human death or serious injury. | | ▲ Caution Wrong operation without follows: | owing this instruction may lead t | o human injury or property damage. | | Example of picture symbols indicates prohibitio | n of actions. Action details are e | explained thereafter. | | indicates compulso | ory actions or instructions. Action | details are explained thereafter | - 1 / 10 - July, 2000 ### 1. General Features of SCM6012-GL are listed below. * SDH STM-4 L-4.1 / SONET OC-12 LR-1 Compliant * Power Supply Voltage Single +3.3V * Compact Package Size 49.0 X 13.59 X 9.4 mm * Electrical Interface LVPECL for DATA, LVTTL for Signal Detect and Laser Disable * Fiber Coupled Power * Input Power Range * Monitor Functions -3 ~ +2dBm (Typ. -0.5dBm) into SMF -8 ~ -28dBm (Typ. Sensitivity -32dBm) Laser Bias Monitor, Rear Facet Monitor * Laser Disable Function * Signal Detect (SD) Function * Connector Interface LC Duplex Receptacle # 2. Block Diagram Figure 1-1. Block Diagram (Transmitter) Figure 1-2. Block Diagram(Receiver) # **∧** Caution $[\]gamma$ Do not disassemble this product. Otherwise, failure, electrical shock, overheating or fire may occur. Handle the lead pins carefully. Use assisting tools or prospective aids as required. A lead pin may injure skin or human body # 3. Package Dimension All dimensions are in mm. Figure 2-1. Outline Dimensions(SCM6012-GL-ZN/ZW) Figure 2-2. Outline Dimensions (SCM6012-GL-CN/CW) Figure 2-3. Recommended Footprint July, 2000 # 4. Pin Assignment | No. | Symbol | I/O/P | Level | Description | |-----|--------|-------|----------------|---| | 1 | VpdR | Р | +3.3V DC | DC Bias Supply for Receiver PIN-PD. | | 2 | VeeR | Р | GND | Power Supply (-) for Receiver. | | 3 | VeeR | Р | GND | Power Supply (-) for Receiver. | | 4 | NC | | | No User Connections. | | 5 | NC | | | No User Connections. | | 6 | VeeR | Р | GND | Power Supply (-) for Receiver. | | 7 | VccR | Р | +3.3V DC | Power Supply (+) for Receiver. | | 8 | SD | 0 | LVTTL | Signal Detect. High level indicates presence of optical input signal (Active High). | | 9 | RDb | 0 | LVPECL | Inverted Receiver Output Data. No internal terminations are provided. | | 10 | RD | 0 | LVPECL | Non-Inverted Receiver Output Data. No internal terminations are provided. | | 11 | VccT | Р | +3.3V DC | Power Supply (+) for Transmitter. | | 12 | VeeT | Р | GND | Power Supply (-) for Transmitter. | | 13 | Tdis | _ | LVTTL/LVCMOS | Transmitter Disable (Active High). Defaults to logic 0 (enable TX) when left open. | | 14 | TD | _ | LVPECL | Non-Inverted Transmitter Input Data. Self biased. Not internally terminated. | | 15 | TDb | - | LVPECL | Inverted Transmitter Input Data. Self biased. Not internally terminated. | | 16 | VeeT | Р | GND | Power Supply (-) for Transmitter. | | 17 | Bmon- | 0 | Analog Voltage | LD Bias Current Monitor. Voltage difference between pins 17 and 18 is proportional | | 18 | Bmon+ | 0 | | to the laser bias current. | | 19 | Pmon- | 0 | Analog Voltage | Rear Facet Monitor. Transmitter output power can be monitored, in terms of rear | | 20 | Pmon+ | 0 | | facet monitor PD current, by measuring voltage difference between pins 19 and 20. | ### Notes: - 1. I/O/P stands for signal input, signal output, and DC power/bias supply, respectively. - 2. Refer to figure 3 for details of Bmon and Pmon outputs. # 5. Absolute Maximum Ratings | Parameter | Symbol | min. | Max | Unit | Note | |---------------------------|-------------|------|---------|------|------| | Storage Case Temperature | Ts | -40 | 85 | °C | 1 | | Operating Case Teperature | Tc | -5 | 70 | °C | 2 | | | 10 | -40 | 85 | C | 3 | | Supply Voltage | Vcc-Vee | 0.0 | 4.0 | V | 4 | | Input Voltage | Vi | Vee | Vcc+0.5 | V | 5 | | Lead Soldering Conditions | Temperature | | 260 | °C | 6 | | | Time | | 10 | sec. | 0 | ### Notes: - $1.\ No\ condensation\ allowed.\quad 2.\ SCM6012\text{-}GL\text{-}*N\quad 3.SCM6012\text{-}GL\text{-}*W\quad 4.\ Vcc\text{>}Vee,\ Vcc\text{=}+3.3V,\ Vee\text{=}GND\text{-}GND\text{-}GND\text{-}GND\text{-}GND\text{-}}$ - 5. TD, TDb, Tdis $\,$ 6. Measured on lead pin at 2mm (0.079in.) off the package bottom # 0 Use the product with the rated voltage described in the specification. If the voltage exceeds the maximum rating, overheating or fire may occur. # Do not store the product in the area where temperature exceeds the maximum rating, where there is too much moisture or dampness, where there is acid gas or corrosive gas, or other extreme conditions. Otherwise, failure, overheating or fire may occur. July, 2000 ### 6. Electrical Interface (Unless otherwise specified, Vcc-Vee = 3.14 to 3.47 V and all operating temperature shall apply.) ### 6-1. Transmitter side | Paramete | er | Symbol | min. | Тур. | Max. | Unit | Note | |-----------------------------|------|---------|----------|------|----------|-------|---------| | Supply Voltage | | Vcc-Vee | 3.14 | 3.30 | 3.47 | V | | | Supply Current | | Idtx | | 70 | 140 | mA | 1, 2, 3 | | TD, TDb Input Voltage | High | Vih | Vcc-1.17 | | Vcc-0.73 | V | 4, 5 | | | Low | Vil | Vcc-1.95 | | Vcc-1.45 | | | | TD, TDb Input Current | High | lih | -10 | | 150 | μΑ | 4, 5 | | | Low | lil | -10 | | 10 | | | | Signal Input Rise / Fall Ti | ime | | | | 1.5 | nsec. | 6 | | Tdis Input Voltage | High | Vdi | Vee+2.0 | | Vcc | V | 7 | | | Low | Vei | Vee | | Vee+0.8 | V | | | Tdis Input Current | High | ldi | -10 | 140 | 200 | μΑ | | | LD Bias Monitor Voltage | | Vbm | 0.01 | 0.05 | 0.50 | V | 5, 8 | ### Notes: - 1. Input bias current is not included. - 2.50% duty cycle data. - 3. 622.28Mbps, PRBS2^23-1, NRZ. - 4. Vcc-Vee=3.3V. - 5. Tc=25°C. - 6. 20-80%. - 7. Refer to Section 8, "Relation between Disable Input Voltage and Optiical Output Power", for detail. - 8. The Laser Bias Monitor Current and Rear Facet Monitor Current are calculated as ratios between the corresponding voltages and current sensing resistors, 10Ω and 200Ω , as shown in the figure 3. Figure 3 Bmon and Pmon Interface ### 6-2. Receiver side | Parameter | | Symbol | min. | Тур. | Max. | Unit | Note | |------------------------|------|-----------|----------|------|----------|-------|------| | Supply Voltage | | Vcc-Vee | 3.14 | 3.30 | 3.47 | V | | | Supply Current | | Idrx | | 80 | 140 | mA | 1 | | RD, RDb Output Voltage | High | Vdoh | Vcc-1.10 | | Vcc-0.86 | V | 2 | | | Low | Vdol | Vcc-1.86 | | Vcc-1.62 | | | | SD Output Voltage | High | Vsoh | Vee+2.20 | | Vcc | V | | | | Low | Vsol | Vee | | 0.5 | | | | Data Rise / Fall Time | | Trd / Tfd | | | 1000 | psec. | 3 | | SD Assert Time | | Та | 2.3 | | 100 | μsec | 4 | | SD Deassert Time | | Td | 2.3 | | 100 | μsec | | | Materi | | | | | | | | ### Notes: - 1. Output current is not included. 622.28Mbps, PRBS2'23-1, NRZ. - 2. Vcc=+3.3V, Tc=25°C. Output load resistance RI=50 Ω to Vcc-2V for RD, RDb. - 3. 20-80%. Input capacitance and stray capacitance of measuring devices should be less than 2pF. - 4. 622.28Mbps, PRBS2^23-1, NRZ. July, 2000 # 7. Optical Interface (Unless otherwise specified, Vcc-Vee = 3.14 to 3.47 V and all operating temperature shall apply.) ### 7-1. Transmitter side | Parameter | Symbol | min. | Тур. | Max. | Unit | Note | |------------------------------|--------|-------------------|------|------|------|------| | Average Output Power | Po | -3.0 | -0.5 | 2.0 | dBm | 1 | | Extinction Ratio | Er | 10 | | | dB | 1 | | Center Wavelength | λς | 1280 | | 1335 | nm | | | Spectral Width (-20dB Width) | Δλ | | | 1.0 | nm | | | Side Mode Suppression Ratio | Sr | 30 | | | dB | | | Eye Mask for Optical Output | | Refer to Figure 4 | | | | | Notes: ^{1.} Measured at 622.28Mbps PRBS2^23-1 Figure 4 Optical Pulse Mask with Fourth Order Bessel-Thomson Filter Specified in ITU-T G.957 # Relation between Input Signal and Optical Output Signal | Optical Output Signal | |-----------------------| | | | ON (High) | | OFF (Low) | | Undefined | | Undefined | | | # **△** Warning Do not look at the laser beam projection area (e.g. end of optical connector) with naked eyes or through optical equipment while the power is supplied to this product. Otherwise, your eyes may be injured. ### 7-2. Receiver side | Parameter | Symbol | min. | Тур. | Max. | Unit | Note | |--------------------------|--------|------|-------|-------|------|------| | Optical Input Wavelength | - | 1260 | | 1580 | nm | | | Minimum Sensitivity | Pmin | | -32.0 | -28.0 | dBm | 1, 2 | | Overload | Pmax | -8 | | | dBm | 1, 2 | | SD Assert Level | Pa | | -36.0 | | dBm | 2 | | SD Deassert Level | Pd | | -38.5 | | dBm | | | SD Hysteresis | Phys | 1.5 | | 6 | dB | | Notes: # 8. Relation between Disable Input Voltage and Optical Output Power | Tdis Input Voltage | Optical Output Power | | | |---------------------|----------------------|--|--| | "L"(Vee ~ Vee+0.8V) | Enabled | | | | "H"(Vee+2.0V ~ Vcc) | Disabled (<-45dBm) | | | | Open | Enabled | | | ^{1.} BER=10^-10 ^{2.} Measured at the bit rate of 622.28Mbps, PRBS 2'23-1, NRZ # 9. Recommended Interface Circuit Figure 5. Recommended Interface Circuit July, 2000 # 10. Reliability Test Program GR-468-CORE Issue 1, December 1998 Laser Module | HEADING | TEST | REFERENCE | CONDITIONS | SAM | 1PLIN | PLING | | |---------------|-------------------|------------------|-----------------------------|------|-------|-------|--| | | | | | LTPD | SS | С | | | | Mechanical | MIL-STD-883 | 5 times/ axis | | | | | | | Shock | Method 2002 | 1,500G, 0.5ms | 20 | 11 | 0 | | | Mechanical | Vibration | MIL-STD-883 | Cond. A 20G, 20-2,000G | 20 | 11 | 0 | | | Integrity | | Method 2007 | Hz, 4min/cy, 4cy/axis | | | | | | | Thermal Shock | MIL-STD-883 | Delta T=100degC | 20 | 11 | 0 | | | | | Method 1011 | 0degC to 100degC | | | | | | | Solderability | MIL-STD-883 | (steam aging not | 20 | 11 | 0 | | | | | Method 2003 | required) | | | | | | | Accel. Aging | (R)-4-53 Section | 85degC; rated power | | | - | | | | (High Temp.) | 5.18 | 1,000 hrs. for pass/fail | - | 25 | | | | | | | 2,000, 5,000 hrs. for info. | | 10 | | | | Endurance | Low Temp. | - | min, storage T | 20 | 11 | 0 | | | | Storage | | 1,000 hrs. for pass/fail | | | | | | | | | 2000 hrs. for info. | | | | | | | Temperature | Section 5.20 | -40degCto+85degC | | | | | | | Cycling | | 500 for pass/fail | 20 | 11 | 0 | | | | | | 1,000 for info. | - | 11 | - | | | | Damp Heat | MIL-STD-202 | 85degC/85%RH 1,000hrs. | 20 | 11 | 0 | | | | | Method 103 or | | | | | | | | | IEC-68-2-3 | | | | | | | | Cyc. Moist,. Res. | Sec. 5.23 | - | 20 | 11 | 0 | | | Special Tests | Internal | MIL-STD-883 | Max. 5,000ppm water | 20 | 11 | 0 | | | | Moisture | Method 1018 | vapour | | | | | | | ESD Threshold | Section 5.22 | | - | 6 | - | | SS: Sample Size C: Maximum number of failure allowed to pass the test. # 11. Laser Safety This product uses a semiconductor laser system and is a laser class 1 product acc. FDA, complies with 21CFR 1040. 10 and 1040.11. Also this product is a laser class 1 product acc. IEC 825-1. ### **∧** Caution \mathcal{Q} If this product is used under conditions not recommended in the specification or this product is used with unauthorized revision, classification for laser product safety standard is invalid. Classify the product again at your responsibility and take appropriate actions. July, 2000 ### 12. Other Precaution Under such a strong vibration environment as in automobile, the performance and reliability are not guaranteed. The governmental approval is required to export this product to other countries. To dispose of these components, the appropriate procedure should be taken to prevent illegal exportation. This module must be handled, used and disposed of according to your company's safe working practice. # Be sure to carry out correct soldering for connection to peripheral circuits in order to prevent contact failure or short-circuit. Otherwise, a strong laser beam may cause eye injury, overheating or fire. Do not put this product or components of this product into your mouth. This product contaions material harmful to health. # ⚠ Caution Be sure to turn the power off when you touch this product connected to the printed circuit boards. Otherwise, electric shock may occur. Dispose this product or equipment including this product properly as an industrial waste according to the regulations. # 13. Ordering Information | Ordering Number | Connector Type | EMI Shield Finger Option | Operating Case Temperature | |-----------------|--|--------------------------|----------------------------| | SCM6012-GL-ZN | LC Duplex Receptacle, Metallized | Without Finger | -5°C ~ 70°C | | SCM6012-GL-CN | LC Duplex Receptacle, Metallized | With Type-C Finger | -5 C ~ 70 C | | SCM6012-GL-ZW | LC Duplex Receptacle, Metallized | Without Finger | -40°C ~ 85°C | | SCM6012-GL-CW | SCM6012-GL-CW LC Duplex Receptacle, Metallized | | -40 C ~ 65 C | ### 14. For More Information U.S.A. Sumitomo Electric Lightwave Corp, 78 Alexander Drive, Research Triangle Park, NC 27709 Tel. +1-919-541-8100 / Fax. +1-919-541-8376 E-mail: info@sumitomoelectric.com http://www.sumitomoelectric.com/products/eop ### Europe Sumitomo Electric Europe Ltd., 220, Centennial Park, Elstree, Herts, WD6 3SL, United Kingdom Tel.+44-208-953-8681 Fax.+44-208-207-5950 ### Japan Sumitomo Electric Industries, Ltd. (International Business Division), 3-12, Moto-Akasaka 1-chome Minato-ku Tokyo 107-8468 Tel. +81-3-3423-5771 / Fax. +81-3-3423-5099 E-mail:product-info@ppd.sei.co.jp http://www.sei.co.jp/Electro-optic/index.html