Description The Raytheon RMLA3565-53 is a single bias wideband low noise MMIC amplifier that meets the following specifications over the 3.5 - 6.5 GHz frequency range. The MMIC requires no external matching circuits and no external gate bias supply. To provide low noise, high linearity, and low current this device uses Raytheon's advanced 0.25 μ m PHEMT process. #### **Features** - 18.0 dB Gain - 1.35 dB Noise Figure - Single Positive Bias - Small Outline Quad Package #### Performance Characteristics | Parameter | Min | Тур | Max | Unit | |--------------------------|------|--------|------|-------| | Frequency Range | 3.5 | | 6.5 | GHz | | Gain (Small Signal) | 17.0 | 18.0 | | dB | | Gain Variation vs Temp | | -0.013 | | dB/°C | | Noise Figure | | 1.35 | 1.9 | dB | | Input/Output Return Loss | | -10.0 | -5.0 | dB | | Power Out, P-1dB | 8.0 | 9.0 | | dBm | | IP3 @ 5.5GHz,-8dBm Out | | 21.0 | | dBm | | ldd | | 70.0 | 90.0 | mΑ | | Vdd | | 4.0 | 6.0 | V | | Case Operating Temp | -35 | | +95 | °C | | Thermal Resistance | | 77.5 | | °C/W | #### Notes: Operated at 25 °C and Vdd=4.0V. 25 °C does not apply to "Case Operating Temperature". ## Absolute Maximum Ratings | Parameter | Symbol | Value | Unit | |---|----------------------|------------|----------------------| | Positive Drain DC Voltage | V_{dd} | 6.5 | V | | RF Input Power (from 50Ω source) | $P_{IN}(CW)$ | 0 | dBm | | Drain Current | I _{dd} | 110 | mΑ | | Channel Temperature | T _{ch} | 175 | $^{\circ}\mathrm{C}$ | | Operating Case Temperature | T _{Case} | -40 to 100 | °C | | Storage Temperature Range | T _{Storage} | -40 to 110 | $^{\circ}\mathrm{C}$ | | Soldering Temperature | T _{solder} | 220 | °C | Figure 1. Functional Block Diagram Figure 2. Outline Dimensions ### **Application Information** #### CAUTION: THIS IS AN ESD SENSITIVE DEVICE The following briefly describes a procedure for evaluating the high efficiency PHEMT amplifier packaged in a surface mount package. It may be noted that the chip is a fully monolithic single ended two stage amplifier for 3.5 to 6.5 GHz applications. Figure 1 shows the functional block diagram of the packaged product. #### **Test Fixture** Figure 2 shows the outline and pin-out descriptions for the packaged device. A typical test fixture schematic showing external bias components is shown in figure 3. Figure 4 shows typical layout of an evaluation board corresponding to the schematic diagram. A typical performance obtained from the test fixture is shown in figure 5. The following should be noted: - (1) Package pin designations are as shown in figure 2. - (2) Vd is the Drain Voltage (positive) applied at the pins of the package - (3) Vdd is the positive supply voltage at the evaluation board terminal ### Test Procedure for the evaluation board (RMLA3565-53-TB) The following sequence of procedure must be followed to properly test the power amplifier: - Step 1: Turn off RF input power. - Step 2: Use GND terminal of the evaluation board for DC supplies. - Step 3: Apply drain supply voltages of +4.0 V to evaluation board terminals Vdd. - Step 4: After the bias condition is established, RF input signal may now be applied. - Step 5: Follow turn-off sequence of: - (i) Turn off RF Input Power (ii) Turn down and off Vdd Figure 3. Schematic for a Typical Test Evaluation Board (RMLA3565-53-TB) Figure 4. Layout and Assembly of Test Evaluation Board (RMLA3565-53-TB) ### PARTS LIST for Test Evaluation Board (RMPA2450-53-TB), (G654220<-change) | PART | VALUE | SIZE(L"xW") | Vendors | |--------|----------------|-------------------|----------------------------| | C1 | 330 pF | .04" x .02" | AVX, Murata, Novacap, | | C2 | 1000 pF | .04" x .02" | AVX, Murata, Novacap | | C3 | 4.75 uF | .14"x .11" | Sprague, ATC, AVX, Murata, | | U1 | RMLA3565-53 | .28" x .28" x .07 | Raytheon | | P1, P2 | Terminal | | Samtec | | J1, J2 | SMA Connectors | | E.F. Johnson | | Board | RO4003(Rogers) | 1.99x1.50x.032 | Raytheon Dwg# ?????? | Figure 5. Typical Performance