

# RT54SX-S

# RadTolerant FPGAs for Space Applications

#### **Special Features for Space**

- First Actel FPGA Designed Specifically for Space Applications
- Up to 2,012 Additional SEU Hardened Flip-Flops Eliminate Software TMR Necessity (LETth > 40, GEO SEU Rate <  $10^{-10}$  upset/bit-day)
- Up to 100krad (Si) Total Ionizing Dose (TID) Parametric Performance Supported with Lot-Specific Test Data
- Single Event Latch-Up Immune
- Flexible I/O Accommodates 2.5V, 3.3V, and 5.0V Input Signals
- Pin Compatibility Allows Prototyping with Commercial SX-A FPGAs, and Mission Implementation with Radiation-Tolerant RT54SX-S
- Deterministic Power-Up
- No Sequencing Required for Supply Voltages at Power-Up
- Cold Sparing Capability
- Devices Available from TM1019.5-tested Pedigreed Lots
- 5.0V CMOS Input Trip Point Option

#### **Standard Features**

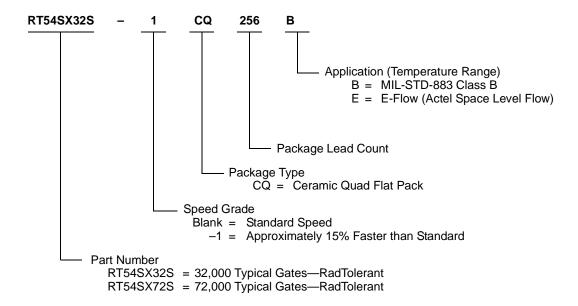
- Very Low Power Consumption (Up to 68 mW at Standby)
- Configurable I/O Support for 3.3V/5.0V PCI, LVTTL, TTL Levels, and CMOS
- 2.5V, 3.3V, and 5.0V Mixed Voltage Operation

- 5.0V Input Tolerance and 5.0V Drive Strength
- Hot-Swapping Capability
- QML Certified Devices
- Secure Programming Technology Prevents Reverse Engineering and Design Theft
- Configurable Weak Resistor Pull-up or Pull-down for Tristated Outputs at Power-Up
- 100% Circuit Resource Utilization with 100% Pin Locking
- Unique In-System Diagnostic and Verification Capability with Silicon Explorer II
- Dedicated JTAG Reset (TRST) Pin
- Deterministic, User-Controllable Timing
- JTAG Boundary Scan Testing In Compliance with IEEE Standard 1149.1
- CMOS Latch-Up Immunity
- 0.25µm Metal-to-Metal Antifuse Process Generation

## **Leading Edge Performance**

- 250 MHz System Performance
- 8.9 ns Clock-to-Out (Pin-to-Pin)
- 310 MHz Internal Performance

## **Specifications**


- 48,000 to 108,000 Available System Gates
- Up to 360 User-Programmable I/O Pins (package dependent)

#### **RT54SX-S Product Profile**

| Device                                             | RT54SX32S | RT54SX72S |
|----------------------------------------------------|-----------|-----------|
| Capacity                                           |           |           |
| Typical Gates                                      | 32,000    | 72,000    |
| System Gates                                       | 48,000    | 108,000   |
| Logic Modules                                      | 2.880     | 6,036     |
| Combinatorial Cells                                | 1,800     | 4,024     |
| SEU Hardened Register Cells (Dedicated Flip-Flops) | 1,080     | 2,012     |
| Maximum Flip-Flops                                 | 1,980     | 4,024     |
| Maximum User I/Os                                  | 227       | 212       |
| Clocks                                             | 3         | 3         |
| Quadrant Clocks                                    | 0         | 4         |
| Clock-to-Out                                       | 8.9 ns    | 11.0 ns   |
| Input Set-Up (External)                            | −1.3 ns   | −3.3 ns   |
| Speed Grades                                       | Std, -1   | Std, -1   |
| Package (by pin count)                             |           |           |
| CQFP                                               | 208, 256  | 208, 256  |



## **Ordering Information**



## Product Plan G15

|                                       | Speed | Grade | Applic | ation |
|---------------------------------------|-------|-------|--------|-------|
|                                       | Std   | -1*   | В      | E     |
| RT54SX32S Devices                     |       |       |        |       |
| 208-Pin Ceramic Quad Flat Pack (CQFP) | Р     | Р     | Р      | Р     |
| 256-Pin Ceramic Quad Flat Pack (CQFP) | Р     | Р     | Р      | Р     |
| RT54SX72S Devices                     |       |       |        |       |
| 208-Pin Ceramic Quad Flat Pack (CQFP) | Р     | Р     | Р      | Р     |
| 256-Pin Ceramic Quad Flat Pack (CQFP) | Р     | Р     | Р      | Р     |

Contact your Actel sales representative for product availability.

Applications: B = MIL-STD-883 Class B Availability: P = Planned E = E-flow (Actel Space Level Flow)

\* Speed Grade: -1 = Approx. 15% Faster than Standard

## **Ceramic Device Resources**

2

|           | User I/Os (including clock buffers) |                 |
|-----------|-------------------------------------|-----------------|
| Device    | CQFP<br>208-Pin                     | CQFP<br>256-Pin |
| RT54SX32S | 173                                 | 227             |
| RT54SX72S | 170                                 | 212             |

Package Definitions (Contact your Actel sales representative for product availability.)

CQFP = Ceramic Quad Flat Pack

#### **Radiation Survivability**

The RadTolerant SX-S devices have varying total dose radiation survivability. The ability of these devices to survive radiation effects is both device and lot dependent. The user must evaluate and determine the applicability of these devices to their specific design and environmental requirements.

Total dose results are summarized in two ways. The first summary is indicated by the maximum total dose level achieved before the device fails to meet an individual performance specification, but remains functional. For Actel FPGAs, the parameter that first exceeds the specification is  $I_{CC}$  (standby supply current). The second summary is indicated by the maximum total dose achieved prior to the functional failure of the device.

Actel provides total dose radiation test data on each pedigreed lot offered for sale. Reports are available on our website or from Actel's local sales representative. Listings of available lots and devices can also be provided.

For a radiation performance summary, see *Radiation Performance* of *Actel Products* at http://www.actel.com/hirel. This summary also shows single event upset (SEU) and single event latch-up (SEL) testing that has been performed on Actel FPGAs.

All radiation performance information is provided for information purposes only and is not guaranteed. Total dose effects are lot-dependent, and Actel does not guarantee that future devices will continue to exhibit similar radiation characteristics. In addition, actual performance can vary widely due to a variety of factors, including but not limited to, characteristics of the orbit, radiation environment, proximity to the satellite exterior, the amount of inherent shielding from other sources within the satellite and actual bare die variations. For these reasons, it is solely the responsibility of the user to determine whether the device will meet the requirements of the specific design.

#### **QML** Certification

Actel has achieved full QML certification demonstrating that quality management procedures, processes, and controls are in place and comply with MIL-PRF-38535, the performance specification used by the Department of Defense for monolithic integrated circuits. QML certification is a good example of Actel's commitment to supplying the highest quality products for all types of high-reliability, military, and space applications.

Many suppliers of microelectronics components have implemented QML as their primary worldwide business system. Appropriate use of this system not only helps in the implementation of advanced technologies, but also allows for high quality, reliable, and cost-effective logistics support throughout QML products' life cycles.

# RT54SX-S—A New Design for Space Applications

The architecture of the RT54SX-S devices is an enhanced version of Actel's SX-A device architecture. For more information about the SX-A device architecture, see the "Background on the Family Architecture" section on page 5.

Featuring SEU hardened D-flip-flops that offer the benefits of Triple Module Redundancy (TMR), the RT54SX-S family is a unique product offering for space applications. The RT54SX-S devices are manufactured using a 0.25µm technology at the Matsushita (MEC) facility in Japan. These devices offer levels of radiation survivability far in excess of typical CMOS devices.

#### **SEU Hardened DFF Description**

In order to meet the stringent SEU requirements of a LETth greater than 40MeV-gm/cm<sup>2</sup>, the internal design of the R-cell was modified without changing the functionality of the cell. Figure 1 shows basic R-cell functionality.

A simplified representation of how the D-flip-flop in the R-cell is implemented in the SX-A architecture is shown in Figure 2. The flip-flop consists of a master and a slave latch gated by opposite edges of the clock. Each latch is constructed by feeding back the output to the input stage. The potential problem in a space environment is that either of the latches can change state when hit by a particle with enough energy.

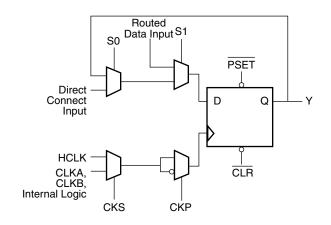



Figure 1 • R-Cell

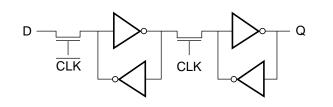
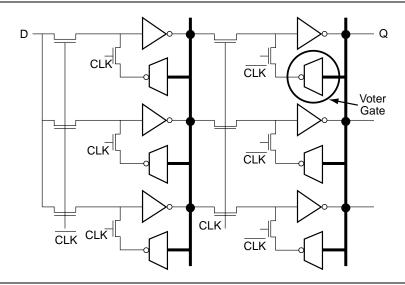




Figure 2 • R-Cell Implementation: RT54SX-S



To achieve the SEU requirements the D-flip-flop in the RT54SX-S R-cell is enhanced (Figure 3). Both the master and the slave latches are implemented with three latches. The feedback path of each of the three latches is voted with the outputs of the other two latches. If one of the three latches is struck by an ion and starts to change state, the voting with the other two latches prevents the change from feeding back and permanently latching. Care was taken in the layout to ensure that a single ion strike could not affect more than one latch.

Figure 4 is a simplified schematic of the test circuitry that has been added to test the functionality of all the components of the flip-flop. The inputs to each of the three latches are independently controllable so the voting circuitry in the feedback paths can be exhaustively tested. This testing is performed on an unprogrammed array during wafer sort, final test and post burn-in test. This test circuitry cannot be used to test the flip-flops once the device has been programmed.



 $\textbf{\textit{Figure 3}} \quad \textbf{\textit{R-Cell Implementation}} \\ - \textit{Voter Gate: RT54SX-S}$ 

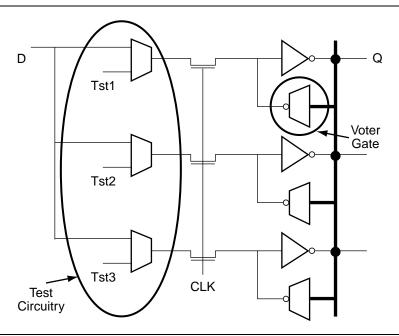
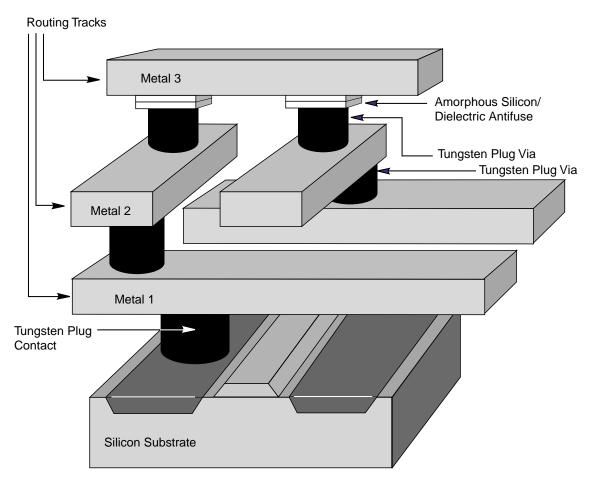



Figure 4 • R-Cell Implementation—Voter Gate and Test Circuitry

#### **Background on the Family Architecture**

The RT54SX-S architecture was designed to satisfy next-generation performance and integration requirements for production-volume designs in a broad range of high reliability applications.

## **Programmable Interconnect Element**


The RT54SX-S family incorporates up to four layers of metal interconnect, and provides much more efficient use of silicon by locating the routing interconnect resources between the Metal 2 (M2) and Metal 3 (M3) layers (see Figure 5). This completely eliminates the channels of routing and interconnect resources between logic modules (as implemented on SRAM FPGAs and previous generations of antifuse FPGAs), and enables the entire floor of the device to be spanned with an uninterrupted grid of logic modules.

Interconnection between these logic modules is achieved using Actel's patented metal-to-metal programmable

antifuse interconnect elements, which are embedded between the top two metal layers. The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection.

The extremely small size of these interconnect elements provides the RT54SX-S family abundant routing resources and additionally excellent protection against design theft. Reverse engineering is virtually impossible as a result of the extreme difficulty to distinguish between programmed and unprogrammed antifuses. Additionally, there is no configuration bitstream to intercept.

The RT54SX-S interconnect (i.e., the antifuses and metal tracks) also has lower capacitance and lower resistance than any other device of similar capacity, leading to the fastest signal propagation in the industry for the radiation tolerance offered.



Note: RT54SX32S has the antifuse between the top two layers of metal. The RT54SX72S has four layers of metal.

**Figure 5** • RT54SX-S Family Interconnect Elements



#### Logic Module Desigsn

The RT54SX-S family architecture has been called a "sea-of-modules" architecture because the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. Actel's RT54SX-S family provides two types of logic modules, the register cell (R-cell) and the combinatorial cell (C-cell).

The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable (using the S0 and S1 lines) control signals (Figure 2 on page 3). The R-cell registers feature programmable clock polarity, selectable on a register-by-register basis. This provides the designer with additional flexibility while allowing mapping of synthesized functions into the RT54SX-S FPGA. The clock source for the

R-cell can be chosen from the hard-wired clock or the routed clock.

The C-cell implements a range of combinatorial functions up to 5-inputs (Figure 6). Inclusion of the DB input and its associated inverter function dramatically increases the number of combinatorial functions that can be implemented in a single module from 800 options in previous architectures to more than 4,000 in the SX-A architecture. An example of the improved flexibility enabled by the inversion capability is the ability to integrate a 3-input exclusive-OR function into a single C-cell. At the same time, the C-cell structure is extremely synthesis-friendly, simplifying the overall design and reducing synthesis time.

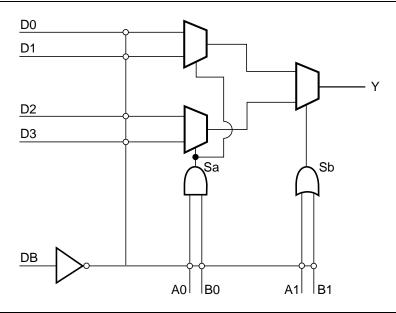



Figure 6 • C-Cell

#### **Chip Architecture**

The RT54SX-S family's chip architecture provides a unique approach to module organization and chip routing that delivers the best register/logic mix for a wide variety of new and emerging applications.

## **Module Organization**

Actel has arranged all C-cell and R-cell logic modules into horizontal banks called *Clusters*. There are two types of Clusters: Type 1 contains two C-cells and one R-cell, while Type 2 contains one C-cell and two R-cells.

To increase design efficiency and device performance, Actel has further organized these modules into *SuperClusters* (see Figure 7 on page 7). SuperCluster 1 is a two-wide grouping of Type 1 clusters. SuperCluster 2 is a two-wide group containing one Type 1 cluster and one Type 2 cluster. RT54SX-S devices feature significantly more SuperCluster 1 modules than SuperCluster 2 modules because designers

typically require significantly more combinatorial logic than flip-flops.

## **Routing Resources**

Clusters and SuperClusters can be connected through the use of two innovative new local routing resources called *FastConnect* and *DirectConnect* which enable extremely fast and predictable interconnection of modules within Clusters and SuperClusters (see Figure 8 on page 7 and Figure 9 on page 8). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance.

DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring R-cell in a given SuperCluster. DirectConnect uses a hard-wired signal path requiring no programmable interconnection to achieve its fast signal propagation time of 0.1 ns.

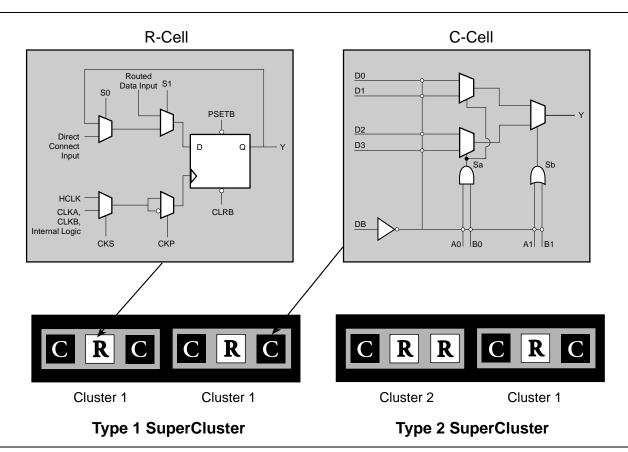



Figure 7 • Cluster Organization

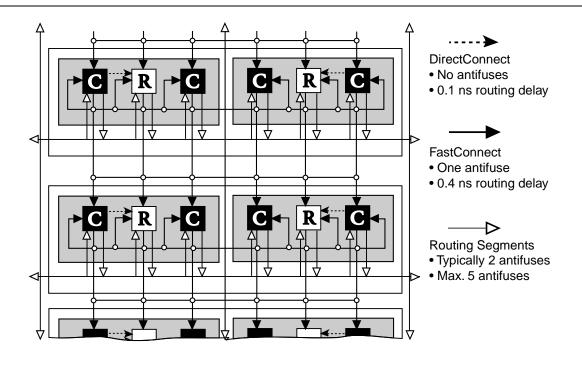
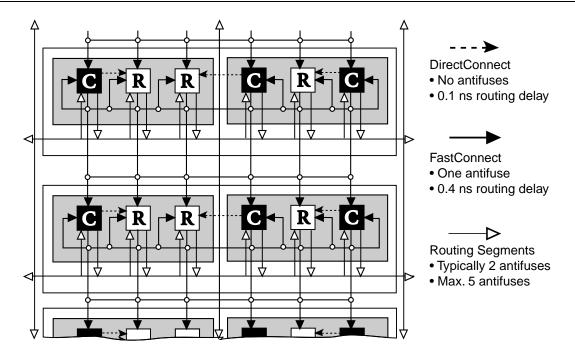




Figure 8 • DirectConnect and FastConnect for Type 1 SuperClusters

Type 1 SuperClusters





Type 2 SuperClusters

Figure 9 • DirectConnect and FastConnect for Type 2 SuperClusters

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster, and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering maximum pin-to-pin propagation of 0.4 ns.

In addition to DirectConnect and FastConnect, the architecture makes use of two globally-oriented routing resources known as segmented routing and high-drive routing. Actel's segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the 100% automatic place-and-route software to minimize signal propagation delays.

## **Clock Resources**

Actel's high-drive routing structure provides three clock networks. The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select MUX in each R-cell. HCLK cannot be connected to combinational logic. This provides a fast propagation path for the clock signal, enabling the 8.9ns clock-to-out (pad-to-pad) performance of the Rt54SX-S devices. The hard-wired clock is tuned to provide clock skew is less than 0.5ns worst case.

The remaining two clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the RT54SX-S device. CLKA and CLKB may be connected to sequential cells or to combinational logic. If CLKA or CLKB is sourced from internal logic signals then the

external clock pin cannot be used for any other input and must be tied low or high. Figure 10 describes the clock circuit used for the constant load HCLK. Figure 11 describes the CLKA and CLKB circuit used in RT54SX-S devices with the exception of RT54SX72S. The CLKA, CLKB, and QCLK circuits for RT54SX72S are shown in Figure 12 on page 9.

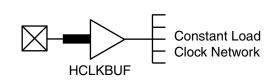
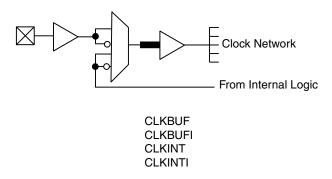




Figure 10 • RT54SX-S Constant Load Clock Pad



**Note:** This does not include the clock pad for RT54SX72S.

Figure 11 • RT54SX-S Clock Pads

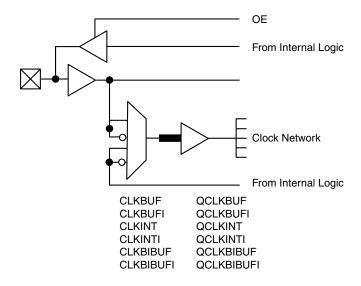



Figure 12 • RT54SX72S Clock/QClock Pads

#### **Other Architecture Features**

#### **Technology**

Actel's RT54SX-S family is implemented in high-voltage twin-well CMOS using 0.25µm design rules. The metal-to-metal antifuse is made up of a combination of amorphous silicon and dielectric material with barrier metals, and has a programmed ("on" state) resistance of 25  $^3\!\!\!/ \Omega$  with capacitance of 1.0 fF for low signal impedance.

#### Performance

The combination of architectural features described above enables RT54SX-S devices to operate with internal clock frequencies exceeding 250 MHz, enabling very fast execution of complex logic functions. Thus, the RT54SX-S family is an optimal platform upon which to integrate the functionality previously contained in multiple CPLDs. In addition, designs that previously would have required a gate array to meet performance goals can now be integrated into an RT54SX-S device with dramatic improvements in cost and time-to-market. Using timing-driven place-and-route tools, designers can achieve highly deterministic device performance. With RT54SX-S devices, designers do not need use complicated performance-enhancing techniques such as redundant logic to reduce fanout on critical nets or the instantiation of macros in HDL code to achieve high performance.

#### I/O Modules

Each I/O on an RT54SX-S device can be configured as an input, an output, a tristate output, or a bidirectional pin. Even without the inclusion of dedicated registers, these I/Os, in combination with array registers, can achieve clock-to-out (PAD-to-PAD) timing as fast as 8.9 ns. I/O cells

including embedded latches and flip-flops require instantiation in HDL code. This is a design complication not encountered in RT54SX-S FPGAs. Fast PAD-to-PAD timing ensures that the device will have little trouble interfacing with any other device in the system, which in turn enables parallel design of system components and reduces overall design time. Other I/O features are found in Table 1.

Table 1 • I/O Features

| Function              | Description                                                                                                                                                                                                                                 |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 Level<br>Selections | <ul><li>LVTTL</li><li>3.3V PCI</li><li>5V CMOS</li></ul>                                                                                                                                                                                    |
|                       | • 5V PCI/TTL Selectable on an individual I/O basis                                                                                                                                                                                          |
| Input Buffer          | 5V tolerant                                                                                                                                                                                                                                 |
| Output<br>Buffer      | <ul> <li>"Hot-Swap" Capability</li> <li>I/O on an unpowered device does not sink current</li> <li>Can be used for "cold-sparing"</li> <li>Selectable on an individual I/O basis</li> <li>Individually selectable low-slew option</li> </ul> |
| 3.3V PCI              | Individually selectable current clamp preventing reflection of a signal greater than 3.3V ( $V_{\rm CCI}$ )                                                                                                                                 |
| Power Up              | Individually selectable pull-ups and pull-downs during power up (default is to power up in tristate)                                                                                                                                        |
|                       | Enables deterministic power up of device                                                                                                                                                                                                    |
|                       | $V_{\mbox{\footnotesize{CCA}}}$ and $V_{\mbox{\footnotesize{CCI}}}$ can be powered in any order                                                                                                                                             |



#### **Hot Swapping**

RT54SX-S I/Os are specifically designed to be configurable as hot-swappable. During power up/down (or partial up/down), all I/Os are tristated.  $V_{\rm CCA}$  and  $V_{\rm CCI}$  do not have to be stable during power up/down and they are not required to power up or power down in any particular sequence in order to avoid damage to the RT54SX-S devices. After the RT54SX-S device is plugged into an electrically active system, the device will not degrade the reliability of or cause damage to the host-system. The device's output pins are driven to a high impedance state until normal chip operating conditions are reached.

#### **Power Requirements**

The RT54SX-S family supports 3.3 either or 5.0V I/O voltage operation and is designed to tolerate 5V inputs in each case (Table 2). Power consumption is extremely low due to the very short distances signals are required to travel to complete a circuit. Power requirements are further reduced due to the small number of antifuses in the path, and because of the low resistance properties of the antifuses. The antifuse architecture does not require active circuitry to hold a charge (as do SRAM or EPROM), making it the lowest-power architecture on the market.

**Table 2** • Supply Voltages

|          | V <sub>CCA</sub> | V <sub>CCI</sub> | Maximum<br>Input<br>Tolerance | Maximum<br>Output<br>Drive |
|----------|------------------|------------------|-------------------------------|----------------------------|
| RT54SX-S | 2.5V             | 3.3V             | 5.0V                          | 3.3V                       |
| 10407-0  | 2.5V             | 5.0V             | 5.0V                          | 5.0V                       |

#### **Boundary Scan Testing (BST)**

All RT54SX-S devices are IEEE 1149.1 (JTAG) compliant. They offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. These functions are controlled through the special test pins in conjunction with the program fuse. The functionality of each pin is described in Table 3.

Table 3 • Boundary Scan Pin Functionality

| Program Fuse Blown<br>(Dedicated Test Mode) | Program Fuse Not Blown (Flexible Mode)             |
|---------------------------------------------|----------------------------------------------------|
| TCK, TDI, TDO are dedicated test pins       | TCK, TDI, TDO are flexible and may be used as I/Os |
| No need for pull-up resistor for TMS        | Use a pull-up resistor of 10k $\Omega$ on TMS      |

## **Configuring Diagnostic Pins**

The JTAG and Probe pins (TDI, TCK, TMS, TDO, PRA, and PRB) are placed in the desired mode by selecting the appropriate check boxes in the "Variation" dialog window. This dialog window is accessible through the Design Setup Wizard under the Tools menu in Actel's Designer software.

#### TRST pin

When the "Reserve JTAG Reset" box is checked (default setting in Designer software), the TRST pin will become a Boundary Scan Reset pin. In this mode, the TRST pin will function as an asynchronous, active-low input to initialize or reset the BST circuit. An internal pull-up resistor will be automatically enabled on the TRST pin.

The TRST pin will function as a user I/O when "Reserve JTAG Reset" box is not checked. The internal pull-up resistor will be disabled in this mode.

#### **Dedicated Test Mode**

When the "Reserve JTAG" box is checked in the Designer software, the RT54SX-S is placed in Dedicated Test mode, which configures the TDI, TCK, and TDO pins for BST or in-circuit verification with Silicon Explorer II. An internal pull-up resistor is automatically enabled on both the TMS and TDI pins. In dedicated test mode, TCK, TDI, and TDO are dedicated test pins and become unavailable for pin assignment in the Pin Editor. The TMS pin will function as specified in the IEEE 1149.1 (JTAG) Specification.

#### Flexible Mode

When the "Reserve JTAG" box is not selected (default setting in Designer software), the RT54SX-S is placed in flexible mode, which allows the TDI, TCK, and TDO pins to function as user I/Os or BST pins. In this mode the internal pull-up resistors on the TMS and TDI pins are disabled. An external  $10 \text{k} \Omega$  pull-up resistor to VCCI is required on the TMS pin.

The TDI, TCK, and TDO pins are transformed from user I/Os into BST pins when a rising edge on TCK is detected while TMS is at logical low. Once the BST pins are in test mode they will remain in BST mode until the internal BST state machine reaches the "logic reset" state. At this point the BST pins will be released and will function as regular I/O pins. The "logic reset" state is reached 5 TCK cycles after the TMS pin is set to logical HIGH.

The program fuse determines whether the device is in Dedicated Test or Flexible mode. The default (fuse not programmed) is Flexible mode.

#### **Development Tool Support**

The RT54SX-S RadTolerant devices are fully supported by Actel's line of FPGA development tools, including the Actel DeskTOP Series and Designer Series' tools. The Actel DeskTOP Series is an integrated design environment for PCs that includes design entry, simulation, synthesis, and place-and-route tools. Designer Series is Actel's suite of FPGA development point tools for PCs and Workstations that includes the ACTgen Macro Builder, Designer Series with DirectTime timing driven place-and-route and analysis tools, and device programming software.

#### **RT54SX-S Probe Circuit Control Pins**

The RT54SX-S RadTolerant devices contain internal probing circuitry that provides built-in access to every node in a design, enabling 100-percent real-time observation and analysis of a device's internal logic nodes without design iteration. The probe circuitry is accessed by Silicon Explorer II, an easy to use integrated verification and logic analysis tool that can sample data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer attaches to a PC's standard COM port, turning the PC into a fully functional 18 channel logic analyzer. Silicon Explorer allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds.

The Silicon Explorer II tool uses the boundary scan ports (TDI, TRST, TCK, TMS, and TDO) to select the desired nets for verification. The selected internal nets are assigned to the PRA/PRB pins for observation. Figure 13 illustrates the interconnection between Silicon Explorer II and the FPGA to perform in-circuit verification.

## **Design Considerations**

For prototyping, the TDI, TCK, TDO, PRA, and PRB pins should not be used as input or bidirectional ports. Because these pins are active during probing, critical signals input through these pins are not available while probing. In addition, the security fuse should not be programmed during prototyping because doing so disables the probe circuitry.

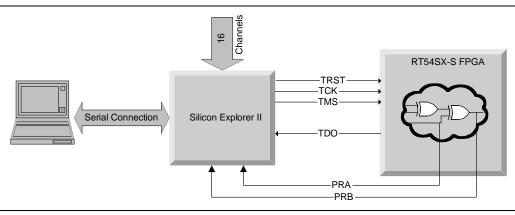



Figure 13 • Probe Setup



## 2.5V/3.3V/5.0V Operating Conditions

## Absolute Maximum Ratings<sup>1</sup>

| Symbol           | Parameter                   | Limits                           | Units |
|------------------|-----------------------------|----------------------------------|-------|
| V <sub>CCI</sub> | DC Supply Voltage           | -0.3 to +6.0                     | V     |
| V <sub>CCA</sub> | DC Supply Voltage           | -0.3 to +3.0                     | V     |
| VI               | Input Voltage               | -0.5 to +5.5                     | V     |
| V <sub>O</sub>   | Output Voltage <sup>2</sup> | $-0.5 \text{ to +V}_{CCI} + 0.5$ | V     |
| T <sub>STG</sub> | Storage Temperature         | -65 to +150                      | °C    |

#### Notes:

- 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions.
- 2.  $V_{CCI}$  is applied as 3.3V, and 5.0V respectively.
- 3. The I/O source sink numbers refer to tristated inputs and outputs.

#### **Recommended Operating Conditions**

| Parameter                                 | Commercial | Military    | Units            |
|-------------------------------------------|------------|-------------|------------------|
| Temperature<br>Range <sup>1</sup>         | 0 to +70   | -55 to +125 | °C               |
| 2.5V Power Supply Tolerance <sup>2</sup>  | ±8         | ±8          | %V <sub>CC</sub> |
| 3.3V Power Supply Tolerance <sup>2</sup>  | ±9         | ±9          | %V <sub>CC</sub> |
| 5V Power Supply<br>Tolerance <sup>2</sup> | ±5         | ±10         | %V <sub>CC</sub> |

#### Notes:

- 1. Ambient temperature  $(T_A)$  is used for commercial and industrial; case temperature  $(T_C)$  is used for military.
- 2. I/Os will be functional a maximum of 250µm after power supplies reach recommended operating range.

## **Electrical Specifications**

|                                  |                                                                  | Comme                                      | ercial           | Milita                   | ıry              |       |
|----------------------------------|------------------------------------------------------------------|--------------------------------------------|------------------|--------------------------|------------------|-------|
| Symbol                           | Parameter                                                        | Min.                                       | Max.             | Min.                     | Max.             | Units |
|                                  | (I <sub>OH</sub> = -20uA) (CMOS)                                 | (V <sub>CCI</sub> – 0.1)                   | V <sub>CCI</sub> | (V <sub>CCI</sub> – 0.1) | V <sub>CCI</sub> |       |
| V <sub>OH</sub>                  | $(I_{OH} = -8mA)$ (TTL)                                          | 2.4                                        | $V_{CCI}$        |                          |                  | V     |
|                                  | $(I_{OH} = -6mA) (TTL)$                                          |                                            |                  | 2.4                      | $V_{CCI}$        |       |
|                                  | (I <sub>OL</sub> = 20uA) (CMOS)                                  |                                            | 0.10             |                          |                  |       |
| $V_{OL}$                         | $(I_{OL} = 12mA)$ (TTL)                                          |                                            | 0.50             |                          |                  | V     |
|                                  | $(I_{OL} = 8mA) (TTL)$                                           |                                            |                  |                          | 0.50             |       |
| $V_{IL}$                         | Low Level Inputs                                                 |                                            | 0.8              |                          | 8.0              | V     |
| V <sub>IH</sub>                  | High Level Inputs                                                | 2.0                                        |                  | 2.0                      |                  | V     |
| I <sub>IL</sub> /I <sub>IH</sub> | Input Leakage Current, V <sub>IN</sub> = V <sub>CCI</sub> or GND | -20                                        | 20               | -20                      | 20               | μΑ    |
| l <sub>OZ</sub>                  | 3-State Output Leakage Current, $V_{OUT} = V_{CCI}$ or GND       | -20                                        | 20               | -20                      | 20               | μA    |
| t <sub>R</sub> , t <sub>F</sub>  | Input Transition Time t <sub>R</sub> , t <sub>F</sub>            |                                            | 10               |                          | 10               | ns    |
| C <sub>IO</sub>                  | C <sub>IO</sub> I/O Capacitance                                  |                                            | 10               |                          | 10               | pF    |
| I <sub>CC</sub>                  | Standby Current, I <sub>CC</sub>                                 |                                            | 10               |                          | 25               | mA    |
| I <sub>CC (D)</sub>              | Standby Current, I <sub>CC (D)</sub> I <sub>DYNAMIC</sub>        | See the Power Dissipation section page 15. |                  | 5.                       |                  |       |

# Actel MIL-STD-883 Class B Product Flow

| Step | Screen                                              | 883 Method                                                                            | 883—Class B<br>Requirement |
|------|-----------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------|
| 1.   | Internal Visual                                     | 2010, Test Condition B                                                                | 100%                       |
| 2.   | Temperature Cycling                                 | 1010, Test Condition C                                                                | 100%                       |
| 3.   | Constant Acceleration                               | 2001, Test Condition D or E,<br>Y <sub>1</sub> , Orientation Only                     | 100%                       |
| 4.   | Seal<br>a. Fine<br>b. Gross                         | 1014                                                                                  | 100%<br>100%               |
| 5.   | Visual Inspection                                   | 2009                                                                                  | 100%                       |
| 6.   | Pre-Burn-In<br>Electrical Parameters                | In accordance with applicable Actel device specification                              | 100%                       |
| 7.   | Burn-in Test                                        | 1015, Condition D,<br>160 hours @ 125°C or 80 hours @ 150°C                           | 100%                       |
| 8.   | Interim (Post-Burn-In)<br>Electrical Parameters     | In accordance with applicable Actel device specification                              | 100%                       |
| 9.   | Percent Defective Allowable                         | 5%                                                                                    | All Lots                   |
| 10.  | Final Electrical Test  a. Static Tests              | In accordance with applicable Actel device specification, which includes a, b, and c: | 100%                       |
|      | (1) 25°C                                            |                                                                                       | 100%                       |
|      | (Subgroup 1, Table I)<br>(2) -55°C and +125°C       | 5005                                                                                  |                            |
|      | (Subgroups 2, 3, Table I)                           | 5005                                                                                  |                            |
|      | b. Functional Tests (1) 25°C                        |                                                                                       | 100%                       |
|      | (Subgroup 7, Table I)<br>(2) -55°C and +125°C       | 5005                                                                                  |                            |
|      | (Subgroups 8A and 8B, Table I)                      | 5005                                                                                  |                            |
|      | c. Switching Tests at 25°C<br>(Subgroup 9, Table I) | 5005                                                                                  | 100%                       |
| 11.  | External Visual                                     | 2009                                                                                  | 100%                       |



## Actel Extended Flow<sup>1</sup>

| Step | Screen                                                                                                 | Method                                                                               | Require-<br>ment |
|------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------|
| 1.   | Wafer Lot Acceptance                                                                                   | 5007                                                                                 | All Lots         |
| 2.   | Destructive In-Line Bond Pull <sup>3</sup>                                                             | 2011, Condition D                                                                    | Sample           |
| 3.   | Internal Visual                                                                                        | 2010, Condition A                                                                    | 100%             |
| 4.   | Serialization                                                                                          |                                                                                      | 100%             |
| 5.   | Temperature Cycling                                                                                    | 1010, Condition C                                                                    | 100%             |
| 6.   | Constant Acceleration                                                                                  | 2001, Condition D or E, Y <sub>1</sub> Orientation Only                              | 100%             |
| 7.   | Particle Impact Noise Detection                                                                        | 2020, Condition A                                                                    | 100%             |
| 8.   | Radiographic                                                                                           | 2012 (one view only)                                                                 | 100%             |
| 9.   | Pre-Burn-In Test                                                                                       | In accordance with applicable Actel device specification                             | 100%             |
| 10.  | Burn-in Test                                                                                           | 1015, Condition D, 240 hours @ 125°C minimum                                         | 100%             |
| 11.  | Interim (Post-Burn-In) Electrical Parameters                                                           | In accordance with applicable Actel device specification                             | 100%             |
| 12.  | Reverse Bias Burn-In                                                                                   | 1015, Condition C, 72 hours @ 150°C minimum                                          | 100%             |
| 13.  | Interim (Post-Burn-In) Electrical Parameters                                                           | In accordance with applicable Actel device specification                             | 100%             |
| 14.  | Percent Defective Allowable (PDA) Calculation                                                          | 5%, 3% Functional Parameters @ 25°C                                                  | All Lots         |
| 15.  | Final Electrical Test                                                                                  | In accordance with Actel applicable device specification which includes a, b, and c: | 100%             |
|      | a. Static Tests (1) 25°C (Subgroup 1, Table1) (2) -55°C and +125°C (Subgroups 2, 3, Table 1)           | 5005<br>5005                                                                         | 100%             |
|      | b. Functional Tests (1) 25°C (Subgroup 7, Table 15) (2) -55°C and +125°C (Subgroups 8A and B, Table 1) | 5005<br>5005                                                                         | 100%             |
|      | c. Switching Tests at 25°C<br>(Subgroup 9, Table 1)                                                    | 5005                                                                                 | 100%             |
| 16.  | Seal                                                                                                   | 1014                                                                                 | 100%             |
|      | a. Fine<br>b. Gross                                                                                    |                                                                                      |                  |
| 17.  | External Visual                                                                                        | 2009                                                                                 | 100%             |

- Actel offers Extended Flow for users requiring additional screening beyond MIL-STD-833, Class B requirement. Actel is offering this Extended Flow incorporating the majority of the screening procedures as outlined in Method 5004 of MIL-STD-883, Class S. The exceptions to Method 5004 are shown in notes 2 and 3 below.
- 2. MIL-STD-883, Method 5004 requires a 100 percent Radiation latch-up testing to Method 1020. Actel will not be performing any radiation testing, and this requirement must be waived in its entirety.
- 3. Method 5004 requires 100 percent nondestructive bond part to Method 2003. Actel substitutes a destructive bond path to Method 2011 Condition D on a sample basis only.

#### **Power Dissipation**

$$P = [I_{CC} standby + I_{CC} active] * V_{CCA} + I_{OL} * V_{OL} * N + I_{OH} * (V_{CCA} - V_{OH}) * M$$

where:

 $I_{CC}$  standby is the current flowing when no inputs or outputs are changing.

I<sub>CC</sub> active is the current flowing due to CMOS switching.

 $I_{OL}$ ,  $I_{OH}$  are TTL sink/source currents.

 $V_{OL}$ ,  $V_{OH}$  are TTL level output voltages.

N equals the number of outputs driving TTL loads to  $\ensuremath{V_{OL}}.$ 

M equals the number of outputs driving TTL loads to V<sub>OH</sub>.

Accurate values for N and M are difficult to determine because they depend on the design and on the system I/O. The power can be divided into two components: static and active.

#### **Static Power Component**

The power due to standby current is typically a small component of the overall power. Standby power is shown below for military, worst case conditions (125°C).

| $I_{CC}$ | $\mathbf{V}_{\mathbf{CCA}}$ | Power |
|----------|-----------------------------|-------|
| 25 mA    | 2.7V                        | 68 mW |

#### **Active Power Component**

Power dissipation in CMOS devices is usually dominated by the active (dynamic) power dissipation. This component is frequency-dependent, a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitance due to PC board traces and load device inputs.

An additional component of the active power dissipation is the totempole current in CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent active power dissipation.

The power dissipated by a CMOS circuit can be expressed by Equation 1:

Power (
$$\mu W$$
) =  $C_{EO} * V_{CCA}^2 * F$  (1)

where:

 $\begin{array}{lll} C_{EQ} & = & Equivalent \ capacitance \ in \ pF \\ V_{CCA} & = & Power \ supply \ in \ volts \ (V) \end{array}$ 

F = Switching frequency in MHz

#### **Equivalent Capacitance**

Equivalent capacitance is calculated by measuring  $I_{CC}$  active at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of  $V_{CCA}$ . Equivalent capacitance is frequency-independent so that the results may be used over a wide range of operating conditions. Equivalent capacitance values are shown below.

## C<sub>EQ</sub> Values (pF)

To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. Equation 2 shows a piece-wise linear summation over all components.

$$\begin{split} &P_{AC} = &V_{CCA}^{2} * \left[ (m * C_{EQM} * f_{m})_{Module} + \\ &(n * C_{EQI} * f_{n})_{Input \; Buffer} + (0.5 * (q_{1} * C_{EQCR} * f_{q1}) + \\ &(r_{1} * f_{q1}))_{RCLKA} + (0.5 * (q_{2} * C_{EQCR} * f_{q2}) + (r_{2} * f_{q2}))_{RCLKB} + \\ &(0.5 * (s_{1} * C_{EQHV} * f_{s1}) + (C_{EQHF} * f_{s1})_{HCLK}] + \\ &V_{CCI}^{2} * \left[ (p * (C_{EQO} + C_{L}) * f_{p})_{Output \; Buffer} \right] \end{split}$$

|                                               |                   | RT54SX32S | RT54SX72S |
|-----------------------------------------------|-------------------|-----------|-----------|
| Equivalent Capacitance (pF)                   |                   | -1        |           |
| Modules                                       | $C_{EQM}$         | 2.0       | 2.0       |
| Input Buffers                                 | C <sub>EQI</sub>  | 1.4       | 1.4       |
| Output Buffers                                | C <sub>EQO</sub>  | 7.4       | 7.4       |
| Routed Array Clock Buffer Loads               | C <sub>EQCR</sub> | 1.9       | 1.9       |
| Variable Capacitance of Dedicated Array Clock | C <sub>EQHV</sub> | 1.2       | 1.2       |
| Fixed Capacitance of Dedicated Array Clock    | C <sub>EQHF</sub> | 195.0     | 449.0     |
| Fixed Capacitance (pF)                        |                   | •         |           |
| routed_Clk1                                   | r <sub>1</sub>    | 194.0     | 475.0     |
| routed_Clk2                                   | r <sub>2</sub>    | 194.0     | 475.0     |
| Fixed Clock Loads                             |                   |           | 1         |
| Maximum Clock Loads on Dedicated Array Clock  | s <sub>1</sub>    | 1080      | 2012      |



where:

m = Number of logic modules switching at f<sub>m</sub>

n = Number of input buffers switching at  $f_n$ 

p = Number of output buffers switching at  $f_p$ 

 $q_1$  = Number of clock loads on the first routed array clock

 $\mathbf{q}_2$  = Number of clock loads on the second routed array clock

 $r_1$  = Fixed capacitance due to first routed array clock

 ${f r}_2$  = Fixed capacitance due to second routed array clock

s<sub>1</sub> = Fixed number of clock loads on the dedicated array clock = (1080 for RT54SX32S)

C<sub>EOM</sub> = Equivalent capacitance of logic modules in pF

 $C_{EQI}$  = Equivalent capacitance of input buffers in pF

 $C_{EQO}$  = Equivalent capacitance of output buffers in pF

 $C_{EQCR}$  = Equivalent capacitance of routed array clock in pF

 $C_L$  = Output lead capacitance in pF

 $f_m$  = Average logic module switching rate in MHz

 $f_n$  = Average input buffer switching rate in MHz

 $f_D$  = Average output buffer switching rate in MHz

 $f_{\alpha 1}$  = Average first routed array clock rate in MHz

 $f_{q2}$  = Average second routed array clock rate in MHz

#### **Determining Average Switching Frequency**

To determine the switching frequency for a design, the user must have a detailed understanding of the data input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that they can be generally used to estimate the upper limits of power dissipation:

Logic Modules (m) = 80% of modules

Inputs Switching (n) = # inputs/4
Outputs Switching (p) = # output/4

First Routed Array Clock Loads  $(q_1) = 40\%$  of sequential

modules

modules

Second Routed Array Clock Loads = 40% of sequential

 $(q_2)$ 

Load Capacitance ( $C_L$ ) = 35 pF

Average Logic Module Switching = F/10

Rate (f<sub>m</sub>)

Average Input Switching Rate  $(f_n) = F/5$ 

Average Output Switching Rate  $(f_p) = F/10$ 

Average First Routed Array Clock = F/2

Rate  $(f_{\alpha 1})$ 

Average Second Routed Array Clock = F/2

Rate  $(f_{a2})$ 

Average Dedicated Array Clock Rate = F

 $(f_{s1})$ 

## PCI Compliance for the RT54SX-S Family

The RT54SX-S family supports 3.3V and 5V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1.

## **DC Specifications (5.0V PCI Operation)**

| Symbol           | Parameter                          | Condition                     | Min. | Max.                   | Units |
|------------------|------------------------------------|-------------------------------|------|------------------------|-------|
| V <sub>CCA</sub> | Supply Voltage for Array           |                               | 2.3  | 2.7                    | V     |
| V <sub>CCI</sub> | Supply Voltage for I/Os            |                               | 4.5  | 5.5                    | V     |
| V <sub>IH</sub>  | Input High Voltage <sup>1</sup>    |                               | 2.0  | V <sub>CCI</sub> + 0.5 | V     |
| V <sub>IL</sub>  | Input Low Voltage <sup>1</sup>     |                               | -0.5 | 0.8                    | V     |
| I <sub>IH</sub>  | Input High Leakage Current         | V <sub>IN</sub> = 2.7         |      | 70                     | μΑ    |
| I <sub>IL</sub>  | Input Low Leakage Current          | V <sub>IN</sub> = 0.5         |      | -70                    | μΑ    |
| V <sub>OH</sub>  | Output High Voltage                | I <sub>OUT</sub> = -2 mA      | 2.4  |                        | V     |
| V <sub>OL</sub>  | Output Low Voltage <sup>2</sup>    | I <sub>OUT</sub> = 3 mA, 6 mA |      | 0.55                   | V     |
| C <sub>IN</sub>  | Input Pin Capacitance <sup>3</sup> |                               |      | 10                     | pF    |
| C <sub>CLK</sub> | CLK Pin Capacitance                |                               | 5    | 12                     | pF    |

- 1. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
- 2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull up must have 6 mA; the latter include, FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and ACK64#.
- 3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK) with an exception granted to motherboard-only devices, which could be up to 16 pF, in order to accommodate PGA packaging. This would mean, in general, that components for expansion boards would need to use alternatives to ceramic PGA packaging (i.e., PQFP, SGA, etc.).



#### **AC Specifications (5.0V PCI Operation)**

| Symbol              | Parameter              | Condition                                                 | Min.                                   | Max.                  | Units |
|---------------------|------------------------|-----------------------------------------------------------|----------------------------------------|-----------------------|-------|
|                     |                        | $0 < V_{OUT} \le 1.4^{-1}$                                | -44                                    |                       | mA    |
|                     | Switching Current High | $1.4 \le V_{OUT} < 2.4^{-1, 2}$                           | (-44 + (V <sub>OUT</sub> - 1.4)/0.024) |                       | mA    |
| I <sub>OH(AC)</sub> |                        | 3.1 < V <sub>OUT</sub> < V <sub>CCI</sub> <sup>1, 3</sup> |                                        | Equation A on page 19 |       |
|                     | (Test Point)           | V <sub>OUT</sub> = 3.1 <sup>3</sup>                       |                                        | -142                  | mA    |
|                     |                        | V <sub>OUT</sub> ≥ 2.2 <sup>1</sup>                       | 95                                     |                       | mA    |
|                     | Switching Current Low  | 2.2 > V <sub>OUT</sub> > 0.55 <sup>1</sup>                | (V <sub>OUT</sub> /0.023)              |                       | mA    |
| I <sub>OL(AC)</sub> |                        | 0.71 > V <sub>OUT</sub> > 0 <sup>1, 3</sup>               |                                        | Equation B on page 19 |       |
|                     | (Test Point)           | V <sub>OUT</sub> = 0.71                                   |                                        | 206                   | mA    |
| I <sub>CL</sub>     | Low Clamp Current      | -5 < V <sub>IN</sub> ≤ -1                                 | -25 + (V <sub>IN</sub> + 1)/0.015      |                       | mA    |
| slew <sub>R</sub>   | Output Rise Slew Rate  | 0.4V to 2.4V load <sup>4</sup>                            | 1                                      | 5                     | V/ns  |
| slew <sub>F</sub>   | Output Fall Slew Rate  | 2.4V to 0.4V load <sup>4</sup>                            | 1                                      | 5                     | V/ns  |

- Refer to the V/I curves in Figure 14 on page 19. Switching current characteristics for REQ# and GNT# are permitted to be one half of that
  specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST# which are
  system outputs. "Switching Current High" specification are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD# which are open drain
  outputs.
- 2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.
- 3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 14 on page 19. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.
- 4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur, and should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.

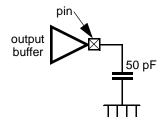



Figure 14 shows the 5.0V PCI V/I curve and the minimum and maximum PCI drive characteristics of the RT54SX-S family.

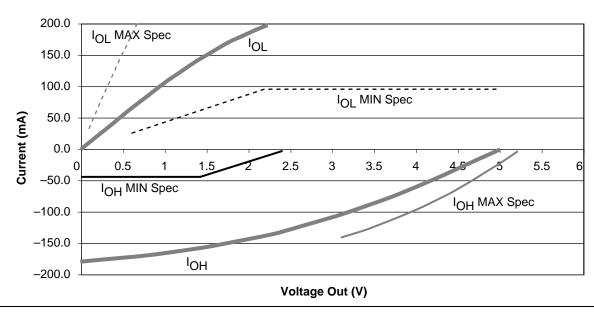



Figure 14 • 5.0V PCI Curve for RT54SX-S Family

**Equation A** 

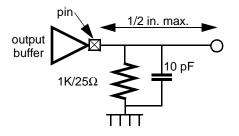
$$I_{OH} = 11.9 * (V_{OUT} - 5.25) * (V_{OUT} + 2.45)$$
 for  $V_{CCL} > V_{OUT} > 3.1 \text{V}$ 

**Equation B** 

$$I_{OL} = 78.5 * V_{OUT} * (4.4 - V_{OUT})$$
  
for  $0V < V_{OUT} < 0.71V$ 



## **DC Specifications (3.3V PCI Operation)**


| Symbol                           | Parameter                          | Condition                              | Min.                | Max.                   | Units |
|----------------------------------|------------------------------------|----------------------------------------|---------------------|------------------------|-------|
| V <sub>CCA</sub>                 | Supply Voltage for Array           |                                        | 2.3                 | 2.7                    | V     |
| V <sub>CCI</sub>                 | Supply Voltage for I/Os            |                                        | 3.0                 | 3.6                    | V     |
| V <sub>IH</sub>                  | Input High Voltage                 |                                        | 0.5V <sub>CCI</sub> | V <sub>CCI</sub> + 0.5 | V     |
| $V_{IL}$                         | Input Low Voltage                  |                                        | -0.5                | 0.3V <sub>CCI</sub>    | V     |
| I <sub>IPU</sub>                 | Input Pull-up Voltage <sup>1</sup> |                                        | 0.7V <sub>CCI</sub> |                        | V     |
| I <sub>IL</sub> /I <sub>IH</sub> | Input Leakage Current <sup>2</sup> | 0 < V <sub>IN</sub> < V <sub>CCI</sub> |                     | ±10                    | μΑ    |
| V <sub>OH</sub>                  | Output High Voltage                | I <sub>OUT</sub> = -500 μA             | 0.9V <sub>CCI</sub> |                        | V     |
| V <sub>OL</sub>                  | Output Low Voltage                 | I <sub>OUT</sub> = 1500 μA             |                     | 0.1V <sub>CCI</sub>    | V     |
| C <sub>IN</sub>                  | Input Pin Capacitance <sup>3</sup> |                                        |                     | 10                     | pF    |
| C <sub>CLK</sub>                 | CLK Pin Capacitance                |                                        | 5                   | 12                     | pF    |

- 1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Applications sensitive to static power utilization should assure that the input buffer is conducting minimum current at this input  $V_{IN}$ .
- $2. \quad Input \ leakage \ currents \ include \ hi\hbox{-}Z \ output \ leakage \ for \ all \ bidirectional \ buffers \ with \ tristate \ outputs.$
- 3. Absolute maximum pin capacitance for a PCI input is 10pF (except for CLK) with an exception granted to motherboard-only devices, which could be up to 16 pF, in order to accommodate PGA packaging. This would mean in general that components for expansion boards would need to use alternatives to ceramic PGA packaging.

#### AC Specifications (3.3V PCI Operation)

| Symbol              | Parameter              | Condition                                                                 | Min.                                                | Max.                  | Units |
|---------------------|------------------------|---------------------------------------------------------------------------|-----------------------------------------------------|-----------------------|-------|
|                     |                        | 0 < V <sub>OUT</sub> ≤ 0.3V <sub>CCI</sub> <sup>1</sup>                   | -12V <sub>CCI</sub>                                 |                       | mA    |
|                     | Switching Current High | $0.3V_{\text{CCI}} \le V_{\text{OUT}} < 0.9V_{\text{CCI}}^{-1}$           | (-17.1 + (V <sub>CCI</sub> - V <sub>OUT</sub> ))    |                       | mA    |
| I <sub>OH(AC)</sub> | gg                     | 0.7V <sub>CCI</sub> < V <sub>OUT</sub> < V <sub>CCI</sub> <sup>1, 2</sup> |                                                     | Equation C on page 22 |       |
|                     | (Test Point)           | $V_{OUT} = 0.7V_{CC}^2$                                                   |                                                     | -32V <sub>CCI</sub>   | mA    |
|                     |                        | V <sub>CCI</sub> > V <sub>OUT</sub> ≥ 0.6V <sub>CCI</sub> <sup>1</sup>    | 16V <sub>CCI</sub>                                  |                       | mA    |
|                     | Switching Current Low  | 0.6V <sub>CCI</sub> > V <sub>OUT</sub> > 0.1V <sub>CCI</sub> 1            | (26.7V <sub>OUT)</sub>                              |                       | mA    |
| I <sub>OL(AC)</sub> | 3 3                    | $0.18V_{CCI} > V_{OUT} > 0^{-1, 2}$                                       |                                                     | Equation D on page 22 |       |
|                     | (Test Point)           | $V_{OUT} = 0.18V_{CC}^2$                                                  |                                                     | 38V <sub>CCI</sub>    | mA    |
| I <sub>CL</sub>     | Low Clamp Current      | -3 < V <sub>IN</sub> ≤ -1                                                 | -25 + (V <sub>IN</sub> + 1)/0.015                   |                       | mA    |
| I <sub>CH</sub>     | High Clamp Current     | $V_{CCI} + 4 > V_{IN} \ge V_{CCI} + 1$                                    | 25 + (V <sub>IN</sub> – V <sub>CCI</sub> – 1)/0.015 |                       | mA    |
| slew <sub>R</sub>   | Output Rise Slew Rate  | 0.2V <sub>CCI</sub> to 0.6V <sub>CCI</sub> load <sup>3</sup>              | 1                                                   | 4                     | V/ns  |
| slew <sub>F</sub>   | Output Fall Slew Rate  | 0.6V <sub>CCI</sub> to 0.2V <sub>CCI</sub> load <sup>3</sup>              | 1                                                   | 4                     | V/ns  |

- Refer to the V/I curves in Figure 15 on page 22. Switching current characteristics for REQ# and GNT# are permitted to be one half of that
  specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST# which are
  system outputs. "Switching Current High" specification are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD# which are open drain
  outputs.
- 2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D) are provided with the respective diagrams in Figure 15 on page 22. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.
- 3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.



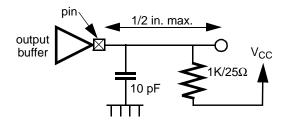





Figure 15 shows the 3.3V PCI V/I curve and the minimum and maximum PCI drive characteristics of the RT54SX-S family.

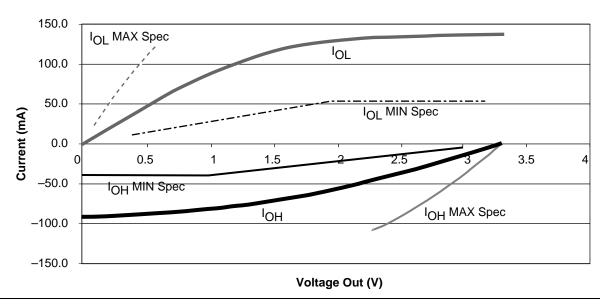



Figure 15 • 3.3V PCI Curve for RT54SX-S Family

**Equation C** 

$$I_{\rm OH} = (98.0/V_{\rm CCI})*(V_{\rm OUT} - V_{\rm CCI})*(V_{\rm OUT} + 0.4V_{\rm CCI})$$
 for  $V_{\rm CCI} > V_{\rm OUT} > 0.7~V_{\rm CCI}$ 

**Equation D** 

$$\begin{split} I_{OL} = (256/V_{CCI})*V_{OUT}*(V_{CCI}-V_{OUT}) \\ for~0V < V_{OUT} < 0.18~V_{CCI} \end{split}$$

## Junction Temperature $(T_J)$

The temperature that is selected in Designer Series software is the junction temperature, not ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. Equation 3, shown below, can be used to calculate junction temperature.

Junction Temperature = 
$$\Delta T + T_a$$
 (3)

Where:

 $T_a = Ambient Temperature$ 

 $\Delta T = Gradient$  between junction (silicon) and ambient

 $\Delta T = \theta_{ja} * P$ 

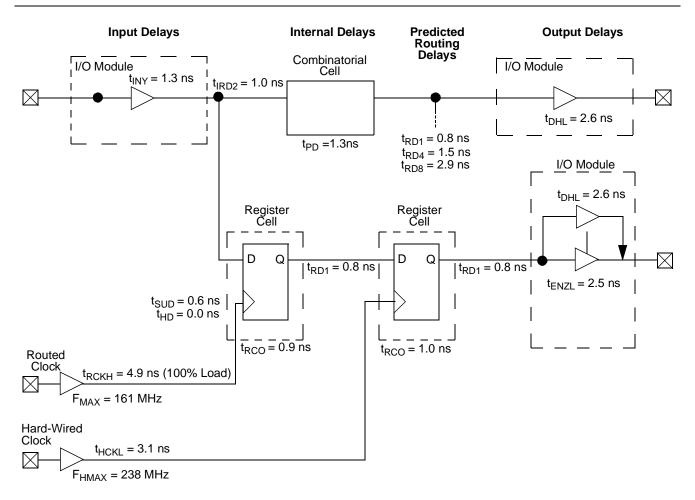
P = Estimating Power Consumption better calculation

 $\theta_{ja}=$  Junction to ambient of package.  $\theta_{ja}$  numbers are located in the Package Thermal Characteristics section below.

## **Package Thermal Characteristics**

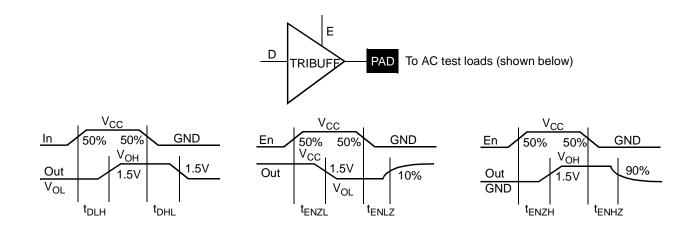
The device junction to case thermal characteristic is  $\theta_{jc}$ , and the junction to ambient air characteristic is  $\theta_{ja}$ .  $\theta_{ja}$  thermal characteristics are shown with two different air flow rates.

The maximum junction temperature is 150°C.

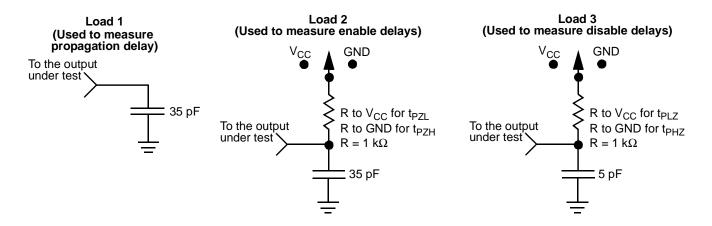

A sample calculation of the absolute maximum power dissipation allowed for a CQFP 208-pin package at military temperature and still air is as follows:

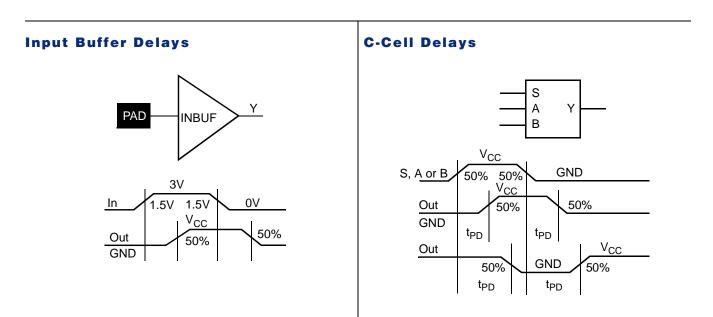
Maximum Power Allowed = 
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°\text{C/W})} = \frac{150°\text{C} - 125°\text{C}}{22°\text{C/W}} = 1.14\text{W}$$

|                                              |           |                       | $\theta_{ja}$ | $\theta_{ja}$ |       |
|----------------------------------------------|-----------|-----------------------|---------------|---------------|-------|
| Package Type                                 | Pin Count | $\theta_{	extsf{jc}}$ | Still Air     | 300 ft/min    | Units |
| RT54SX32S                                    |           |                       |               |               |       |
| Ceramic Quad Flat Pack (CQFP)                | 208       | 6.3                   | 22            | 14            | °C/W  |
| Ceramic Quad Flat Pack (CQFP)                | 256       | 6.2                   | 20            | 10            | °C/W  |
| RT54SX72S                                    |           |                       |               |               |       |
| Ceramic Quad Flat Pack (CQFP)                | 208       | 6.3                   | 22            | 13            | °C/W  |
| Ceramic Quad Flat Pack (CQFP) with Heat Sink | 256       | 6.2                   | 19            | 9             | °C/W  |




## RT54SX-S Timing Model\*

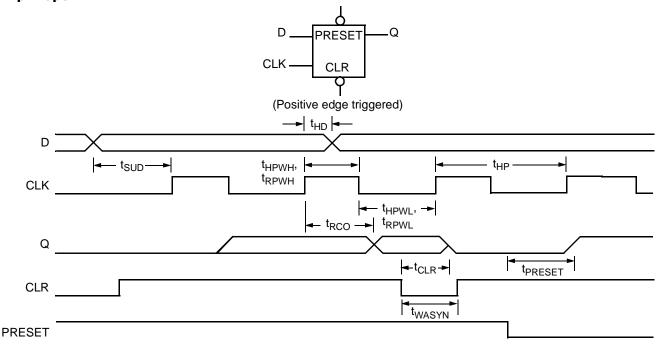




<sup>\*</sup>Values shown for RTSX32S-1, 5V TTL worst-case military conditions.

## **Output Buffer Delays**



#### **AC Test Loads**








#### **Cell Timing Characteristics**

#### Flip-Flops



## **Timing Characteristics**

RT54SX-S device timing characteristics are in three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all RT54SX-S devices. Internal routing delays are device dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design is complete. Delay values may then be determined by using the Timer utility or performing simulation with post-layout delays.

#### **Critical Nets and Typical Nets**

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most time-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6% of the nets in a design may be designated as critical, while 90% of the nets in a design are typical.

#### **Long Tracks**

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically up to 6% of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout routing delays in the data sheet specifications section.

#### **Timing Derating**

RT54SX-S devices are manufactured in a CMOS process. Therefore, device performance varies according to temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

## **Temperature and Voltage Derating Factors**

(Normalized to Worst-Case Military,  $T_J = 125^{\circ}C$ ,  $V_{CCA} = 2.3V$ )

|                  |      | Junction Temperature (T <sub>J</sub> ) |      |      |      |      |      |  |
|------------------|------|----------------------------------------|------|------|------|------|------|--|
| V <sub>CCA</sub> | -55  | -40                                    | 0    | 25   | 70   | 85   | 125  |  |
| 2.3              | 0.68 | 0.69                                   | 0.75 | 0.77 | 0.86 | 0.90 | 1.00 |  |
| 2.5              | 0.64 | 0.65                                   | 0.70 | 0.72 | 0.81 | 0.84 | 0.93 |  |
| 2.7              | 0.60 | 0.61                                   | 0.66 | 0.68 | 0.76 | 0.79 | 0.88 |  |

## **RT54SX32S Timing Characteristics**

(Worst-Case Military Conditions,  $V_{CCA} = 2.3V_{,} V_{CCI} = 3.0V, T_{J} = 125^{\circ}C$ )

|                     |                                       | '–1' \$ | Speed | 'Std' | Speed |       |
|---------------------|---------------------------------------|---------|-------|-------|-------|-------|
| Parameter           | Description                           | Min.    | Max.  | Min.  | Max.  | Units |
| C-Cell Propag       | gation Delays <sup>1</sup>            |         |       |       |       |       |
| t <sub>PD</sub>     | Internal Array Module                 |         | 1.3   |       | 1.6   | ns    |
| Predicted Ro        | uting Delays <sup>2</sup>             |         |       |       |       |       |
| t <sub>DC</sub>     | FO=1 Routing Delay, Direct Connect    |         | 0.1   |       | 0.1   | ns    |
| $t_{FC}$            | FO=1 Routing Delay, Fast Connect      |         | 0.4   |       | 0.4   | ns    |
| t <sub>RD1</sub>    | FO=1 Routing Delay                    |         | 8.0   |       | 0.9   | ns    |
| t <sub>RD2</sub>    | FO=2 Routing Delay                    |         | 1.0   |       | 1.2   | ns    |
| t <sub>RD3</sub>    | FO=3 Routing Delay                    |         | 1.4   |       | 1.6   | ns    |
| t <sub>RD4</sub>    | FO=4 Routing Delay                    |         | 1.5   |       | 1.8   | ns    |
| t <sub>RD8</sub>    | FO=8 Routing Delay                    |         | 2.9   |       | 3.4   | ns    |
| t <sub>RD12</sub>   | FO=12 Routing Delay                   |         | 4.0   |       | 4.7   | ns    |
| R-Cell Timing       | I                                     |         |       |       |       |       |
| t <sub>RCO</sub>    | Sequential Clock-to-Q                 |         | 1.0   |       | 1.2   | ns    |
| $t_{CLR}$           | Asynchronous Clear-to-Q               |         | 0.9   |       | 1.1   | ns    |
| t <sub>PRESET</sub> | Asynchronous Preset-to-Q              |         | 1.0   |       | 1.2   | ns    |
| t <sub>SUD</sub>    | Flip-Flop Data Input Set-Up           | 0.6     |       | 0.8   |       | ns    |
| t <sub>HD</sub>     | Flip-Flop Data Input Hold             | 0.0     |       | 0.0   |       | ns    |
| t <sub>WASYN</sub>  | Asynchronous Pulse Width              | 1.8     |       | 2.2   |       | ns    |
|                     | Propagation Delays                    |         |       |       |       |       |
| t <sub>INYH</sub>   | Input Data Pad-to-Y HIGH 3.3V PCI     |         | 1.4   |       | 1.6   | ns    |
| t <sub>INYL</sub>   | Input Data Pad-to-Y LOW 3.3V PCI      |         | 1.5   |       | 1.8   | ns    |
| t <sub>INYH</sub>   | Input Data Pad-to-Y HIGH 3.3V LVTTL   |         | 1.4   |       | 1.6   | ns    |
| t <sub>INYL</sub>   | Input Data Pad-to-Y LOW 3.3V LVTTL    |         | 1.5   |       | 1.8   | ns    |
| t <sub>INYH</sub>   | Input Data Pad-to-Y HIGH 5.0V PCI     |         | 1.3   |       | 1.6   | ns    |
| $t_{INYL}$          | Input Data Pad-to-Y LOW 5.0V PCI      |         | 1.7   |       | 2.0   | ns    |
| t <sub>INYH</sub>   | Input Data Pad-to-Y HIGH 5.0V TTL     |         | 1.3   |       | 1.6   | ns    |
| $t_{INYL}$          | Input Data Pad-to-Y LOW 5.0V TTL      |         | 1.7   |       | 2.0   | ns    |
| t <sub>INYH</sub>   | Input Data Pad-to-Y HIGH 5.0V CMOS    |         | 1.7   |       | 2.0   | ns    |
| $t_{INYL}$          | Input Data Pad-to-Y LOW 5.0V CMOS     |         | 1.6   |       | 1.9   | ns    |
|                     | Predicted Routing Delays <sup>2</sup> |         |       |       |       |       |
| t <sub>IRD1</sub>   | FO=1 Routing Delay                    |         | 0.8   |       | 0.9   | ns    |
| t <sub>IRD2</sub>   | FO=2 Routing Delay                    |         | 1.0   |       | 1.2   | ns    |
| t <sub>IRD3</sub>   | FO=3 Routing Delay                    |         | 1.4   |       | 1.6   | ns    |
| t <sub>IRD4</sub>   | FO=4 Routing Delay                    |         | 1.5   |       | 1.8   | ns    |
| t <sub>IRD8</sub>   | FO=8 Routing Delay                    |         | 2.9   |       | 3.4   | ns    |
| t <sub>IRD12</sub>  | FO=12 Routing Delay                   |         | 4.0   |       | 4.7   | ns    |

 $<sup>1. \</sup>quad \textit{For dual-module macros, use } t_{PD} + t_{RDI} + t_{PDn}, t_{RCO} + t_{RDI} + t_{PDn} \textit{ or } t_{PDI} + t_{RDI} + t_{SUD}, \textit{ whichever is appropriate.}$ 

<sup>2.</sup> Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance.



(Worst-Case Military Conditions  $V_{CCA}$  = 2.3V,  $V_{CCI}$  = 3.0V,  $T_J$  = 125°C)

|                    |                                                         | '–1' \$ | Speed | 'Std' | Speed |       |
|--------------------|---------------------------------------------------------|---------|-------|-------|-------|-------|
| Parameter          | Description                                             | Min.    | Max.  | Min.  | Max.  | Units |
| Dedicated (Ha      | ard-Wired) Array Clock Network                          |         |       |       |       |       |
| <sup>t</sup> HCKH  | Input LOW to HIGH<br>(Pad to R-Cell Input)              |         | 3.4   |       | 4.0   | ns    |
| <sup>t</sup> HCKL  | Input HIGH to LOW (Pad to R-Cell Input)                 |         | 3.4   |       | 4.0   | ns    |
| t <sub>HPWH</sub>  | Minimum Pulse Width HIGH                                | 2.1     |       | 2.5   |       | ns    |
| t <sub>HPWL</sub>  | Minimum Pulse Width LOW                                 | 2.1     |       | 2.5   |       | ns    |
| t <sub>HCKSW</sub> | Maximum Skew                                            |         | 0.5   |       | 0.6   | ns    |
| t <sub>HP</sub>    | Minimum Period                                          | 4.2     |       | 5.0   |       | ns    |
| $f_{\text{HMAX}}$  | Maximum Frequency                                       |         | 238   |       | 200   | MHz   |
| Routed Array       | Clock Networks                                          |         |       |       |       |       |
| <sup>t</sup> RCKH  | Input LOW to HIGH (Light Load)<br>(Pad to R-Cell Input) |         | 3.2   |       | 3.7   | ns    |
| t <sub>RCKL</sub>  | Input HIGH to LOW (Light Load) (Pad to R-Cell Input)    |         | 3.2   |       | 3.7   | ns    |
| t <sub>RCKH</sub>  | Input LOW to HIGH (50% Load)<br>(Pad to R-Cell Input)   |         | 4.0   |       | 4.7   | ns    |
| t <sub>RCKL</sub>  | Input HIGH to LOW (50% Load)<br>(Pad to R-Cell Input)   |         | 3.8   |       | 4.4   | ns    |
| t <sub>RCKH</sub>  | Input LOW to HIGH (100% Load) (Pad to R-Cell Input)     |         | 4.9   |       | 5.8   | ns    |
| t <sub>RCKL</sub>  | Input HIGH to LOW (100% Load)<br>(Pad to R-Cell Input)  |         | 3.8   |       | 4.5   | ns    |
| t <sub>RPWH</sub>  | Min. Pulse Width HIGH                                   | 3.1     |       | 3.7   |       | ns    |
| t <sub>RPWL</sub>  | Min. Pulse Width LOW                                    | 3.1     |       | 3.7   |       | ns    |
| t <sub>RCKSW</sub> | Maximum Skew (Light Load)                               |         | 1.9   |       | 2.0   | ns    |
| t <sub>RCKSW</sub> | Maximum Skew (50% Load)                                 |         | 1.9   |       | 2.0   | ns    |
| t <sub>RCKSW</sub> | Maximum Skew (100% Load)                                |         | 1.9   |       | 2.0   | ns    |

(Worst-Case Military Conditions  $V_{CCA} = 2.3V$ ,  $V_{CCI} = 4.5V$ ,  $T_J = 125$ °C)

|                    |                                                        | '–1' \$ | Speed | 'Std' | Speed |       |
|--------------------|--------------------------------------------------------|---------|-------|-------|-------|-------|
| Parameter          | Description                                            | Min.    | Max.  | Min.  | Max.  | Units |
| Dedicated (Ha      | ard-Wired) Array Clock Network                         |         |       |       |       |       |
| <sup>t</sup> HCKH  | Input LOW to HIGH<br>(Pad to R-Cell Input)             |         | 3.1   |       | 3.6   | ns    |
| t <sub>HCKL</sub>  | Input HIGH to LOW<br>(Pad to R-Cell Input)             |         | 3.1   |       | 3.6   | ns    |
| t <sub>HPWH</sub>  | Minimum Pulse Width HIGH                               | 2.1     |       | 2.5   |       | ns    |
| t <sub>HPWL</sub>  | Minimum Pulse Width LOW                                | 2.1     |       | 2.5   |       | ns    |
| t <sub>HCKSW</sub> | Maximum Skew                                           |         | 0.5   |       | 0.6   | ns    |
| t <sub>HP</sub>    | Minimum Period                                         | 4.2     |       | 5.0   |       | ns    |
| $f_{\text{HMAX}}$  | Maximum Frequency                                      |         | 238   |       | 200   | MHz   |
| Routed Array       | Clock Networks                                         |         |       |       |       |       |
| <sup>t</sup> RCKH  | Input LOW to HIGH (Light Load) (Pad to R-Cell Input)   |         | 3.1   |       | 3.6   | ns    |
| t <sub>RCKL</sub>  | Input HIGH to LOW (Light Load) (Pad to R-Cell Input)   |         | 3.1   |       | 3.6   | ns    |
| <sup>t</sup> RCKH  | Input LOW to HIGH (50% Load)<br>(Pad to R-Cell Input)  |         | 3.7   |       | 4.6   | ns    |
| t <sub>RCKL</sub>  | Input HIGH to LOW (50% Load)<br>(Pad to R-Cell Input)  |         | 3.8   |       | 4.4   | ns    |
| t <sub>RCKH</sub>  | Input LOW to HIGH (100% Load)<br>(Pad to R-Cell Input) |         | 4.9   |       | 5.8   | ns    |
| t <sub>RCKL</sub>  | Input HIGH to LOW (100% Load)<br>(Pad to R-Cell Input) |         | 3.8   |       | 4.5   | ns    |
| t <sub>RPWH</sub>  | Min. Pulse Width HIGH                                  | 3.1     |       | 3.7   |       | ns    |
| t <sub>RPWL</sub>  | Min. Pulse Width LOW                                   | 3.1     |       | 3.7   |       | ns    |
| t <sub>RCKSW</sub> | Maximum Skew (Light Load)                              |         | 1.9   |       | 2.3   | ns    |
| t <sub>RCKSW</sub> | Maximum Skew (50% Load)                                |         | 1.9   |       | 2.3   | ns    |
| t <sub>RCKSW</sub> | Maximum Skew (100% Load)                               |         | 1.9   |       | 2.3   | ns    |



# (Worst-Case Military Conditions $V_{CCA} = 2.3V$ , $V_{CCI} = 3.0V$ , $T_J = 125$ °C)

|                     |                                    | '–1' S | Speed | 'Std' | Speed |       |
|---------------------|------------------------------------|--------|-------|-------|-------|-------|
| Parameter           | Description                        | Min.   | Max.  | Min.  | Max.  | Units |
| 3.3V PCI Outp       | out Module Timing <sup>1</sup>     |        |       |       |       |       |
| t <sub>DLH</sub>    | Data-to-Pad LOW to HIGH            |        | 2.7   |       | 3.1   | ns    |
| t <sub>DHL</sub>    | Data-to-Pad HIGH to LOW            |        | 2.9   |       | 3.4   | ns    |
| t <sub>DHLS</sub>   | Data-to-Pad High to LOW – low slew |        | 15.0  |       | 17.7  | ns    |
| t <sub>ENZL</sub>   | Enable-to-Pad, Z to L              |        | 2.1   |       | 2.5   | ns    |
| t <sub>DENZLS</sub> | Enable-to-Pad, Z to LOW – low slew |        | 9.3   |       | 10.9  | ns    |
| t <sub>ENZH</sub>   | Enable-to-Pad, Z to H              |        | 2.7   |       | 3.9   | ns    |
| t <sub>ENLZ</sub>   | Enable-to-Pad, L to Z              |        | 2.7   |       | 3.9   | ns    |
| t <sub>ENHZ</sub>   | Enable-to-Pad, H to Z              |        | 2.5   |       | 3.0   | ns    |
| $d_{TLH}$           | Delta LOW to HIGH                  |        | 0.03  |       | 0.04  | ns/pF |
| $d_{THL}$           | Delta HIGH to LOW                  |        | 0.015 |       | 0.015 | ns/pF |
| d <sub>THLS</sub>   | Delta HIGH to LOW – low slew       |        | 0.065 |       | 0.075 | ns/pF |
| 3.3V LVTTL O        | Output Module Timing <sup>2</sup>  |        |       |       |       |       |
| t <sub>DLH</sub>    | Data-to-Pad LOW to HIGH            |        | 3.7   |       | 4.3   | ns    |
| t <sub>DHL</sub>    | Data-to-Pad HIGH to LOW            |        | 3.6   |       | 4.2   | ns    |
| t <sub>DHLS</sub>   | Data-to-Pad HIGH to LOW – low slew |        | 12.7  |       | 14.9  | ns    |
| t <sub>ENZL</sub>   | Enable-to-Pad, Z to L              |        | 2.9   |       | 3.4   | ns    |
| t <sub>DENZLS</sub> | Enable-to-Pad, Z to LOW – low slew |        | 12.7  |       | 14.9  | ns    |
| t <sub>ENZH</sub>   | Enable-to-Pad, Z to H              |        | 3.7   |       | 4.4   | ns    |
| t <sub>ENLZ</sub>   | Enable-to-Pad, L to Z              |        | 3.7   |       | 4.4   | ns    |
| t <sub>ENHZ</sub>   | Enable-to-Pad, H to Z              |        | 3.4   |       | 4.0   | ns    |
| $d_{TLH}$           | Delta LOW to HIGH                  |        | 0.033 |       | 0.04  | ns/pF |
| $d_{THL}$           | Delta HIGH to LOW                  |        | 0.02  |       | 0.02  | ns/pF |
| $d_THLS$            | Delta HIGH to LOW – low slew       |        | 0.067 |       | 0.073 | ns/pF |

<sup>1.</sup> Delays based on 10pF loading and 25  $\Omega$  resistance.

<sup>2.</sup> Delays based on 35pF loading.

(Worst-Case Military Conditions  $V_{CCA} = 2.3V$ ,  $V_{CCI} = 4.5V$ ,  $T_J = 125$ °C)

|                     |                                    | '–1' \$ | '-1' Speed |      | Speed |       |
|---------------------|------------------------------------|---------|------------|------|-------|-------|
| Parameter           | Description                        | Min.    | Max.       | Min. | Max.` | Units |
| 5.0V PCI Outp       | ut Module Timing <sup>1</sup>      |         |            |      |       |       |
| t <sub>DLH</sub>    | Data-to-Pad LOW to HIGH            |         | 2.9        |      | 3.4   | ns    |
| t <sub>DHL</sub>    | Data-to-Pad HIGH to LOW            |         | 3.8        |      | 4.4   | ns    |
| t <sub>DHLS</sub>   | Data-to-Pad HIGH to LOW – low slew |         | 9.7        |      | 11.4  | ns    |
| t <sub>ENZL</sub>   | Enable-to-Pad, Z to LOW            |         | 2.8        |      | 3.3   | ns    |
| t <sub>DENZLS</sub> | Enable-to-Pad, Z to LOW – low slew |         | 10.1       |      | 11.9  | ns    |
| t <sub>ENZH</sub>   | Enable-to-Pad, Z to HIGH           |         | 3.2        |      | 3.8   | ns    |
| t <sub>ENLZ</sub>   | Enable-to-Pad, LOW to Z            |         | 4.9        |      | 5.8   | ns    |
| t <sub>ENHZ</sub>   | Enable-to-Pad, HIGH to Z           |         | 4.1        |      | 4.9   | ns    |
| d <sub>TLH</sub>    | Delta LOW to HIGH                  |         | 0.02       |      | 0.022 | ns/pF |
| d <sub>THL</sub>    | Delta HIGH to LOW                  |         | 0.032      |      | 0.04  | ns/pF |
| d <sub>THLS</sub>   | Delta HIGH to LOW - low slew       |         | 0.06       |      | 0.07  | ns/pF |
| 5.0V TTL Outp       | out Module Timing <sup>2</sup>     |         |            |      |       |       |
| t <sub>DLH</sub>    | Data-to-Pad LOW to HIGH            |         | 2.6        |      | 3.1   | ns    |
| t <sub>DHL</sub>    | Data-to-Pad HIGH to LOW            |         | 3.5        |      | 4.1   | ns    |
| t <sub>DHLS</sub>   | Data-to-Pad HIGH to LOW – low slew |         | 8.9        |      | 10.4  | ns    |
| t <sub>ENZL</sub>   | Enable-to-Pad, Z to LOW            |         | 2.5        |      | 3.0   | ns    |
| t <sub>DENZLS</sub> | Enable-to-Pad, Z to LOW – low slew |         | 9.0        |      | 10.6  | ns    |
| t <sub>ENZH</sub>   | Enable-to-Pad, Z to HIGH           |         | 2.8        |      | 3.4   | ns    |
| t <sub>ENLZ</sub>   | Enable-to-Pad, LOW to Z            |         | 4.4        |      | 5.3   | ns    |
| t <sub>ENHZ</sub>   | Enable-to-Pad, HIGH to Z           |         | 3.6        |      | 4.4   | ns    |
| d <sub>TLH</sub>    | Delta LOW to HIGH                  |         | 0.017      |      | 0.023 | ns/pF |
| d <sub>THL</sub>    | Delta HIGH to LOW                  |         | 0.031      |      | 0.037 | ns/pF |
| d <sub>THLS</sub>   | Delta HIGH to LOW – low slew       |         | 0.06       |      | 0.07  | ns/pF |
| 5.0V CMOS O         | utput Module Timing <sup>2</sup>   |         |            |      |       |       |
| t <sub>DLH</sub>    | Data-to-Pad LOW to HIGH            |         | 3.1        |      | 3.6   | ns    |
| t <sub>DHL</sub>    | Data-to-Pad HIGH to LOW            |         | 3.2        |      | 3.8   | ns    |
| t <sub>DHLS</sub>   | Data-to-Pad HIGH to LOW – low slew |         | 8.5        |      | 10.0  | ns    |
| t <sub>ENZL</sub>   | Enable-to-Pad, Z to LOW            |         | 2.3        |      | 2.71  | ns    |
| t <sub>DENZLS</sub> | Enable-to-Pad, Z to LOW - low slew |         | 8.8        |      | 10.4  | ns    |
| t <sub>ENZH</sub>   | Enable-to-Pad, Z to HIGH           |         | 3.0        |      | 3.6   | ns    |
| t <sub>ENLZ</sub>   | Enable-to-Pad, LOW to Z            |         | 4.5        |      | 5.3   | ns    |
| t <sub>ENHZ</sub>   | Enable-to-Pad, HIGH to Z           |         | 3.5        |      | 4.7   | ns    |

<sup>1.</sup> Delays based on 50pF loading.

<sup>2.</sup> Delays based on 35pF loading.



## **RT54SX72S Timing Characteristics**

(Worst-Case Military Conditions,  $V_{CCA} = 2.3V_{,} V_{CCI} = 3.0V, T_{J} = 125^{\circ}C$ )

|                                       | '–1' \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | '-1' Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 'Std' Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                           | Min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ation Delays <sup>1</sup>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Internal Array Module                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| uting Delays <sup>2</sup>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FO=1 Routing Delay, Direct Connect    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FO=1 Routing Delay, Fast Connect      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FO=1 Routing Delay                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FO=2 Routing Delay                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FO=3 Routing Delay                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FO=4 Routing Delay                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FO=8 Routing Delay                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FO=12 Routing Delay                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sequential Clock-to-Q                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Asynchronous Clear-to-Q               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Asynchronous Preset-to-Q              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Flip-Flop Data Input Set-Up           | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Flip-Flop Data Input Hold             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Asynchronous Pulse Width              | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Propagation Delays                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Input Data Pad-to-Y HIGH 3.3V PCI     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Input Data Pad-to-Y LOW 3.3V PCI      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Input Data Pad-to-Y HIGH 3.3V LVTTL   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Input Data Pad-to-Y LOW 3.3V LVTTL    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Input Data Pad-to-Y HIGH 5.0V PCI     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Input Data Pad-to-Y LOW 5.0V PCI      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Input Data Pad-to-Y HIGH 5.0V LVTTL   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Input Data Pad-to-Y LOW 5.0V LVTTL    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Input Data Pad-to-Y HIGH 5.0V CMOS    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Input Data Pad-to-Y LOW 5.0V CMOS     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Predicted Routing Delays <sup>2</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FO=1 Routing Delay                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FO=2 Routing Delay                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FO=3 Routing Delay                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FO=4 Routing Delay                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FO=8 Routing Delay                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FO=12 Routing Delay                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       | Internal Array Module  Inting Delays <sup>2</sup> FO=1 Routing Delay, Direct Connect FO=1 Routing Delay, Fast Connect FO=1 Routing Delay FO=2 Routing Delay FO=3 Routing Delay FO=4 Routing Delay FO=8 Routing Delay FO=12 Routing Delay FO=12 Routing Delay  Sequential Clock-to-Q Asynchronous Clear-to-Q Asynchronous Preset-to-Q Flip-Flop Data Input Set-Up Flip-Flop Data Input Hold Asynchronous Pulse Width  Propagation Delays  Input Data Pad-to-Y HIGH 3.3V PCI Input Data Pad-to-Y HIGH 3.3V LVTTL Input Data Pad-to-Y HIGH 5.0V PCI Input Data Pad-to-Y HIGH 5.0V PCI Input Data Pad-to-Y HIGH 5.0V LVTTL Input Data Pad-to-Y HIGH 5.0V LVTTL Input Data Pad-to-Y HIGH 5.0V LVTTL Input Data Pad-to-Y HIGH 5.0V CMOS Input Data Pad-to-Y HIGH 5.0V CMOS Input Data Pad-to-Y HIGH 5.0V CMOS Input Data Pad-to-Y LOW 5.0V CMOS Input Data Pad-to-Y LOW 5.0V CMOS Input Data Pad-to-Y LOW 5.0V CMOS Predicted Routing Delay FO=2 Routing Delay FO=3 Routing Delay FO=8 Routing Delay FO=8 Routing Delay FO=8 Routing Delay | Description  Jation Delays¹  Internal Array Module  Juting Delays²  FO=1 Routing Delay, Direct Connect FO=1 Routing Delay, Fast Connect FO=1 Routing Delay FO=2 Routing Delay FO=3 Routing Delay FO=8 Routing Delay FO=8 Routing Delay FO=8 Routing Delay FO=12 Routing Delay FO=12 Routing Delay  Sequential Clock-to-Q Asynchronous Clear-to-Q Asynchronous Preset-to-Q Filip-Flop Data Input Hold Asynchronous Pulse Width 1.8  Propagation Delays  Input Data Pad-to-Y HIGH 3.3V PCI Input Data Pad-to-Y HIGH 3.3V LVTTL Input Data Pad-to-Y HIGH 5.0V PCI Input Data Pad-to-Y HIGH 5.0V PCI Input Data Pad-to-Y HIGH 5.0V LVTTL Input Data Pad-to-Y HIGH 5.0V LVTTL Input Data Pad-to-Y HIGH 5.0V CMOS Input Data Pad-to-Y LOW 5.0V LVTTL Input Data Pad-to-Y HIGH 5.0V CMOS Input Data Pad-to-Y LOW 5.0V CMOS Input Data Pad-to-Y Data Pad-to-Y Data Pad-to-Y Data Pad-to- | Internal Array Module | Description   Min.   Max.   Min.   Min.   Max.   Min.   Min.   Max.   Min.   Min.   Min.   Max.   Min.   Min. | Description   Min.   Max.   Min.   Min.   Min.   Min.   Min.   Min.   Min.   Min.   Max.   Min.   Min. |

 $<sup>1. \</sup>quad \textit{For dual-module macros, use } t_{PD} + t_{RDI} + t_{PDn} \text{, } t_{RCO} + t_{RDI} + t_{PDn} \text{ or } t_{PDI} + t_{RDI} + t_{SUD} \text{, whichever is appropriate.}$ 

<sup>2.</sup> Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance.

(Worst-Case Military Conditions  $V_{CCA} = 2.3V$ ,  $V_{CCI} = 3.0V$ ,  $T_J = 125$ °C)

|                                            |                                                        | '–1' \$ | '-1' Speed |      | 'Std' Speed |       |
|--------------------------------------------|--------------------------------------------------------|---------|------------|------|-------------|-------|
| Parameter                                  | Description                                            | Min.    | Max.       | Min. | Max.        | Units |
| Dedicated (Hard-Wired) Array Clock Network |                                                        |         |            |      |             |       |
| <sup>t</sup> HCKH                          | Input LOW to HIGH<br>(Pad to R-Cell Input)             |         | 5.8        |      | 1.8         | ns    |
| <sup>t</sup> HCKL                          | Input HIGH to LOW (Pad to R-Cell Input)                |         | 5.8        |      | 6.8         | ns    |
| t <sub>HPWH</sub>                          | Minimum Pulse Width HIGH                               | 3.6     |            | 4.3  |             | ns    |
| t <sub>HPWL</sub>                          | Minimum Pulse Width LOW                                | 3.6     |            | 4.3  |             | ns    |
| t <sub>HCKSW</sub>                         | Maximum Skew                                           |         | 1.4        |      | 1.6         | ns    |
| t <sub>HP</sub>                            | Minimum Period                                         | 7.2     |            | 8.6  |             | ns    |
| $f_{\text{HMAX}}$                          | Maximum Frequency                                      |         | 139        |      | 116         | MHz   |
| Routed Array                               | Clock Networks                                         |         |            |      |             |       |
| <sup>t</sup> RCKH                          | Input LOW to HIGH (Light Load) (Pad to R-Cell Input)   |         | 5.9        |      | 6.8         | ns    |
| t <sub>RCKL</sub>                          | Input HIGH to LOW (Light Load) (Pad to R-Cell Input)   |         | 5.9        |      | 6.8         | ns    |
| <sup>t</sup> RCKH                          | Input LOW to HIGH (50% Load)<br>(Pad to R-Cell Input)  |         | 7.4        |      | 8.7         | ns    |
| t <sub>RCKL</sub>                          | Input HIGH to LOW (50% Load)<br>(Pad to R-Cell Input)  |         | 7.0        |      | 8.2         | ns    |
| t <sub>RCKH</sub>                          | Input LOW to HIGH (100% Load)<br>(Pad to R-Cell Input) |         | 9.1        |      | 10.8        | ns    |
| t <sub>RCKL</sub>                          | Input HIGH to LOW (100% Load)<br>(Pad to R-Cell Input) |         | 7.0        |      | 8.3         | ns    |
| t <sub>RPWH</sub>                          | Min. Pulse Width HIGH                                  | 5.7     |            | 6.8  |             | ns    |
| t <sub>RPWL</sub>                          | Min. Pulse Width LOW                                   | 5.7     |            | 6.8  |             | ns    |
| t <sub>RCKSW</sub>                         | Maximum Skew (Light Load)                              |         | 3.5        |      | 3.7         | ns    |
| t <sub>RCKSW</sub>                         | Maximum Skew (50% Load)                                |         | 3.5        |      | 3.7         | ns    |
| t <sub>RCKSW</sub>                         | Maximum Skew (100% Load)                               |         | 3.5        |      | 3.7         | ns    |



(Worst-Case Military Conditions  $V_{CCA} = 2.3V$ ,  $V_{CCI} = 4.5V$ ,  $T_J = 125$ °C)

|                    |                                                         | '–1' \$ | '-1' Speed |      | 'Std' Speed |       |
|--------------------|---------------------------------------------------------|---------|------------|------|-------------|-------|
| Parameter          | Description                                             | Min.    | Max.       | Min. | Max.        | Units |
| Dedicated (Ha      | ard-Wired) Array Clock Network                          |         |            |      |             |       |
| <sup>t</sup> HCKH  | Input LOW to HIGH<br>(Pad to R-Cell Input)              |         | 5.3        |      | 6.1         | ns    |
| t <sub>HCKL</sub>  | Input HIGH to LOW<br>(Pad to R-Cell Input)              |         | 5.3        |      | 6.1         | ns    |
| t <sub>HPWH</sub>  | Minimum Pulse Width HIGH                                | 3.6     |            | 4.3  |             | ns    |
| t <sub>HPWL</sub>  | Minimum Pulse Width LOW                                 | 3.6     |            | 4.3  |             | ns    |
| t <sub>HCKSW</sub> | Maximum Skew                                            |         | 1.4        |      | 1.6         | ns    |
| t <sub>HP</sub>    | Minimum Period                                          | 7.2     |            | 8.6  |             | ns    |
| f <sub>HMAX</sub>  | Maximum Frequency                                       |         | 139        |      | 116         | MHz   |
| Routed Array       | Clock Networks                                          |         |            |      |             |       |
| t <sub>RCKH</sub>  | Input LOW to HIGH (Light Load)<br>(Pad to R-Cell Input) |         | 5.7        |      | 6.6         | ns    |
| t <sub>RCKL</sub>  | Input HIGH to LOW (Light Load) (Pad to R-Cell Input)    |         | 5.7        |      | 6.6         | ns    |
| t <sub>RCKH</sub>  | Input LOW to HIGH (50% Load)<br>(Pad to R-Cell Input)   |         | 6.8        |      | 8.4         | ns    |
| t <sub>RCKL</sub>  | Input HIGH to LOW (50% Load)<br>(Pad to R-Cell Input)   |         | 7.0        |      | 8.2         | ns    |
| t <sub>RCKH</sub>  | Input LOW to HIGH (100% Load)<br>(Pad to R-Cell Input)  |         | 9.1        |      | 10.8        | ns    |
| t <sub>RCKL</sub>  | Input HIGH to LOW (100% Load) (Pad to R-Cell Input)     |         | 7.0        |      | 8.3         | ns    |
| t <sub>RPWH</sub>  | Min. Pulse Width HIGH                                   | 5.7     |            | 6.8  |             | ns    |
| t <sub>RPWL</sub>  | Min. Pulse Width LOW                                    | 5.7     |            | 6.8  |             | ns    |
| t <sub>RCKSW</sub> | Maximum Skew (Light Load)                               |         | 3.5        |      | 3.7         | ns    |
| t <sub>RCKSW</sub> | Maximum Skew (50% Load)                                 |         | 3.5        |      | 3.7         | ns    |
| t <sub>RCKSW</sub> | Maximum Skew (100% Load)                                |         | 3.5        |      | 3.7         | ns    |

(Worst-Case Military Conditions  $V_{CCA} = 2.3V$ ,  $V_{CCI} = 3.0V$ ,  $T_J = 125$ °C)

|                     |                                    | '–1' S | '-1' Speed |      | 'Std' Speed |       |
|---------------------|------------------------------------|--------|------------|------|-------------|-------|
| Parameter           | Description                        | Min.   | Max.       | Min. | Max.        | Units |
| 3.3V PCI Outp       | out Module Timing <sup>1</sup>     |        |            |      |             |       |
| t <sub>DLH</sub>    | Data-to-Pad LOW to HIGH            |        | 2.7        |      | 3.1         | ns    |
| t <sub>DHL</sub>    | Data-to-Pad HIGH to LOW            |        | 2.9        |      | 3.4         | ns    |
| t <sub>DHLS</sub>   | Data-to-Pad HIGH to LOW – low slew |        | 15.0       |      | 17.7        | ns    |
| t <sub>ENZL</sub>   | Enable-to-Pad, Z to L              |        | 2.1        |      | 2.5         | ns    |
| t <sub>DENZLS</sub> | Enable-to-Pad, Z to LOW – low slew |        | 9.3        |      | 10.9        | ns    |
| t <sub>ENZH</sub>   | Enable-to-Pad, Z to H              |        | 2.7        |      | 3.9         | ns    |
| t <sub>ENLZ</sub>   | Enable-to-Pad, L to Z              |        | 2.7        |      | 3.9         | ns    |
| t <sub>ENHZ</sub>   | Enable-to-Pad, H to Z              |        | 2.5        |      | 3.0         | ns    |
| d <sub>TLH</sub>    | Delta LOW to HIGH                  |        | 0.03       |      | 0.04        | ns/pF |
| d <sub>THL</sub>    | Delta HIGH to LOW                  |        | 0.015      |      | 0.015       | ns/pF |
| d <sub>THLS</sub>   | Delta HIGH to LOW - low slew       |        | 0.065      |      | 0.075       | ns/pF |
| 3.3V LVTTL O        | output Module Timing <sup>2</sup>  |        |            |      |             |       |
| t <sub>DLH</sub>    | Data-to-Pad LOW to HIGH            |        | 3.7        |      | 4.3         | ns    |
| t <sub>DHL</sub>    | Data-to-Pad HIGH to LOW            |        | 3.6        |      | 4.2         | ns    |
| t <sub>DHLS</sub>   | Data-to-Pad HIGH to LOW – low slew |        | 12.7       |      | 14.9        | ns    |
| t <sub>ENZL</sub>   | Enable-to-Pad, Z to L              |        | 2.9        |      | 3.4         | ns    |
| t <sub>DENZLS</sub> | Enable-to-Pad, Z to LOW – low slew |        | 12.7       |      | 14.9        | ns    |
| t <sub>ENZH</sub>   | Enable-to-Pad, Z to H              |        | 3.7        |      | 4.4         | ns    |
| t <sub>ENLZ</sub>   | Enable-to-Pad, L to Z              |        | 3.7        |      | 4.4         | ns    |
| t <sub>ENHZ</sub>   | Enable-to-Pad, H to Z              |        | 3.4        |      | 4.0         | ns    |
| d <sub>TLH</sub>    | Delta LOW to HIGH                  |        | 0.033      |      | 0.04        | ns/pF |
| d <sub>THL</sub>    | Delta HIGH to LOW                  |        | 0.02       |      | 0.02        | ns/pF |
| d <sub>THLS</sub>   | Delta HIGH to LOW – low slew       |        | 0.067      |      | 0.073       | ns/pF |

<sup>1.</sup> Delays based on 10pF loading and 25  $\Omega$  resistance.

<sup>2.</sup> Delays based on 35pF loading.



(Worst-Case Military Conditions  $V_{CCA}$  = 2.3V,  $V_{CCI}$  = 4.5V,  $T_J$  = 125°C)

|                     |                                    | '–1' S | '-1' Speed |      | 'Std' Speed |       |
|---------------------|------------------------------------|--------|------------|------|-------------|-------|
| Parameter           | Description                        | Min.   | Max.       | Min. | Max.`       | Units |
| 5.0V PCI Outp       | out Module Timing <sup>1</sup>     |        |            |      |             |       |
| t <sub>DLH</sub>    | Data-to-Pad LOW to HIGH            |        | 2.9        |      | 3.4         | ns    |
| t <sub>DHL</sub>    | Data-to-Pad HIGH to LOW            |        | 3.8        |      | 4.4         | ns    |
| t <sub>DHLS</sub>   | Data-to-Pad HIGH to LOW – low slew |        | 9.7        |      | 11.4        | ns    |
| t <sub>ENZL</sub>   | Enable-to-Pad, Z to LOW            |        | 2.8        |      | 3.3         | ns    |
| t <sub>DENZLS</sub> | Enable-to-Pad, Z to LOW – low slew |        | 10.1       |      | 11.9        | ns    |
| t <sub>ENZH</sub>   | Enable-to-Pad, Z to HIGH           |        | 3.2        |      | 3.8         | ns    |
| t <sub>ENLZ</sub>   | Enable-to-Pad, LOW to Z            |        | 4.9        |      | 5.8         | ns    |
| t <sub>ENHZ</sub>   | Enable-to-Pad, HIGH to Z           |        | 4.1        |      | 4.9         | ns    |
| $d_{TLH}$           | Delta LOW to HIGH                  |        | 0.02       |      | 0.022       | ns/pF |
| $d_{THL}$           | Delta HIGH to LOW                  |        | 0.032      |      | 0.04        | ns/pF |
| d <sub>THLS</sub>   | Delta HIGH to LOW – low slew       |        | 0.06       |      | 0.07        | ns/pF |
| 5.0V TTL Out        | out Module Timing <sup>2</sup>     |        |            |      |             |       |
| t <sub>DLH</sub>    | Data-to-Pad LOW to HIGH            |        | 2.6        |      | 3.1         | ns    |
| t <sub>DHL</sub>    | Data-to-Pad HIGH to LOW            |        | 3.5        |      | 4.1         | ns    |
| t <sub>DHLS</sub>   | Data-to-Pad HIGH to LOW – low slew |        | 8.9        |      | 10.4        | ns    |
| t <sub>ENZL</sub>   | Enable-to-Pad, Z to LOW            |        | 2.5        |      | 3.0         | ns    |
| t <sub>DENZLS</sub> | Enable-to-Pad, Z to LOW – low slew |        | 9.0        |      | 10.6        | ns    |
| t <sub>ENZH</sub>   | Enable-to-Pad, Z to HIGH           |        | 2.8        |      | 3.4         | ns    |
| t <sub>ENLZ</sub>   | Enable-to-Pad, LOW to Z            |        | 4.4        |      | 5.3         | ns    |
| t <sub>ENHZ</sub>   | Enable-to-Pad, HIGH to Z           |        | 3.6        |      | 4.4         | ns    |
| $d_{TLH}$           | Delta LOW to HIGH                  |        | 0.017      |      | 0.023       | ns/pF |
| $d_{THL}$           | Delta HIGH to LOW                  |        | 0.031      |      | 0.037       | ns/pF |
| d <sub>THLS</sub>   | Delta HIGH to LOW – low slew       |        | 0.06       |      | 0.07        | ns/pF |
| 5.0V CMOS O         | utput Module Timing <sup>2</sup>   |        |            |      |             |       |
| t <sub>DLH</sub>    | Data-to-Pad LOW to HIGH            |        | 3.1        |      | 3.6         | ns    |
| t <sub>DHL</sub>    | Data-to-Pad HIGH to LOW            |        | 3.2        |      | 3.8         | ns    |
| t <sub>DHLS</sub>   | Data-to-Pad HIGH to LOW – low slew |        | 8.5        |      | 10.0        | ns    |
| t <sub>ENZL</sub>   | Enable-to-Pad, Z to LOW            |        | 2.3        |      | 2.71        | ns    |
| t <sub>DENZLS</sub> | Enable-to-Pad, Z to LOW – low slew |        | 8.8        |      | 10.4        | ns    |
| t <sub>ENZH</sub>   | Enable-to-Pad, Z to HIGH           |        | 3.0        |      | 3.6         | ns    |
| t <sub>ENLZ</sub>   | Enable-to-Pad, LOW to Z            |        | 4.5        |      | 5.3         | ns    |
| t <sub>ENHZ</sub>   | Enable-to-Pad, HIGH to Z           |        | 3.5        |      | 4.7         | ns    |

Notes:

36

<sup>1.</sup> Delays based on 50pF loading.

<sup>2.</sup> Delays based on 35pF loading.

#### **Pin Description**

#### CLKA/B Clock A and B

These pins are clock inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, 3.3V PCI or 5.0V PCI specifications. The clock input is buffered prior to clocking the R-cells. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating. (For RT54SX72S, these clocks can be configured as user I/O.)

# QCLKA/B/C/D, Quadrant Clock A, B, C, and D I/O

These four pins are the quadrant clock inputs and are only for RT54SX72S. They are clock inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, 3.3V PCI or 5.0V PCI specifications. Each of these clock inputs can drive up to a quarter of the chip, or they can be grouped together to drive multiple quadrants. The clock input is buffered prior to clocking the R-cells. If not used as a clock it will behave as a regular I/O.

#### GND Ground

LOW supply voltage.

# HCLK Dedicated (Hard-wired) Array Clock

This pin is the clock input for sequential modules. Input levels are compatible with standard TTL, LVTTL, 3.3V PCI or 5.0V PCI specifications. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating.

#### I/O Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL, LVTTL, 3.3V PCI or 5.0V PCI specifications. Unused I/O pins are automatically tristated by the Designer Series software.

#### NC No Connection

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

#### PRA, I/O, Probe A/B PRB, I/O

The Probe pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The Probe pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

#### TDI, I/O Test Data Input

Serial input for boundary scan testing and diagnostic probe. In flexible mode, TDI is active when the TMS pin is set LOW (refer to Table 3 on page 10). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

#### TDO, I/O Test Data Output

Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set LOW (refer to Table 3 on page 10). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

#### TMS Test Mode Select

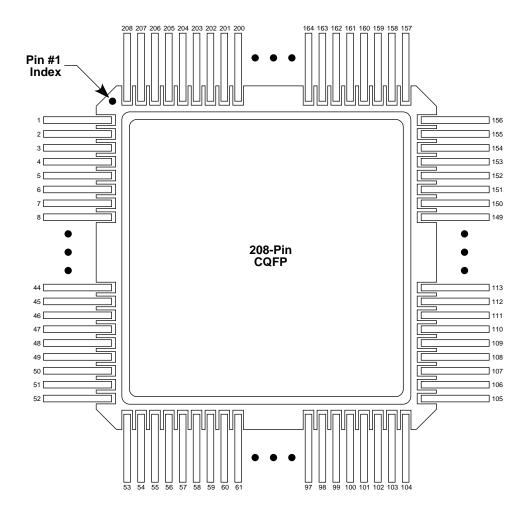
The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO, TRST). In flexible mode when the TMS pin is set LOW, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 3 on page 10). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the "logic reset" state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The "logic reset" state is reached 5 TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications.

#### TRST, I/O Boundary Scan Reset Pin

Once it is configured as the JTAG Reset pin, the TRST pin functions as an active-low input to asynchronously initialize or reset the boundary scan circuit. The TRST pin is equipped with an internal pull-up resistor. This pin functions as an I/O when the "Reserve JTAG Reset Pin" is not selected in Designer.

#### V<sub>CCI</sub> Supply Voltage

Supply voltage for I/Os. See Table 2 on page 10.


#### V<sub>CCA</sub> Supply Voltage

Supply voltage for Array. See Table 2 on page 10.



# **Package Pin Assignments**

# 208-Pin CQFP (Top View)



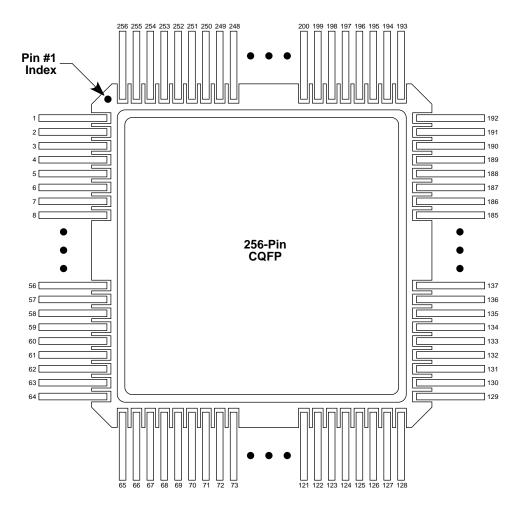
38

208-Pin CQFP

| Pin Number | RT54SX32S<br>Function | RT54SX72S<br>Function   | Pin Number | RT54SX32S<br>Function | RT54SX72S<br>Function |
|------------|-----------------------|-------------------------|------------|-----------------------|-----------------------|
| 1          | GND                   | GND                     | 53         | I/O                   | I/O                   |
| 2          | TDI, I/O              | TDI, I/O                | 54         | I/O                   | I/O                   |
| 3          | I/O                   | I/O                     | 55         | I/O                   | I/O                   |
| 4          | I/O                   | I/O                     | 56         | I/O                   | I/O                   |
| 5          | I/O                   | I/O                     | 57         | I/O                   | I/O                   |
| 6          | I/O                   | I/O                     | 58         | I/O                   | I/O                   |
| 7          | I/O                   | I/O                     | 59         | I/O                   | I/O                   |
|            |                       |                         |            |                       |                       |
| 8          | 1/0                   | 1/0                     | 60         | V <sub>CCI</sub>      | V <sub>CCI</sub>      |
| 9          | I/O                   | I/O                     | 61         | I/O                   | I/O                   |
| 10         | I/O                   | I/O                     | 62         | I/O                   | I/O                   |
| 11         | TMS                   | TMS                     | 63         | I/O                   | I/O                   |
| 12         | $V_{CCI}$             | $V_{CCI}$               | 64         | I/O                   | I/O                   |
| 13         | I/O                   | I/O                     | 65         | NC                    | I/O                   |
| 14         | I/O                   | I/O                     | 66         | I/O                   | I/O                   |
| 15         | I/O                   | I/O                     | 67         | I/O                   | I/O                   |
| 16         | I/O                   | I/O                     | 68         | I/O                   | I/O                   |
| 17         | I/O                   | I/O                     | 69         | I/O                   | I/O                   |
| 18         | I/O                   | GND                     | 70         | I/O                   | I/O                   |
| 19         | I/O                   |                         | 71         | I/O                   | 1/0                   |
| 20         | 1/0                   | V <sub>CCA</sub><br>I/O | 72         | I/O                   | I/O                   |
|            |                       |                         |            |                       |                       |
| 21         | I/O                   | I/O                     | 73         | I/O                   | I/O                   |
| 22         | I/O                   | I/O                     | 74         | I/O                   | QCLKA                 |
| 23         | I/O                   | I/O                     | 75         | I/O                   | I/O                   |
| 24         | I/O                   | I/O                     | 76         | PRB, I/O              | PRB, I/O              |
| 25         | NC                    | I/O                     | 77         | GND                   | GND                   |
| 26         | GND                   | GND                     | 78         | $V_{CCA}$             | $V_{CCA}$             |
| 27         | $V_{CCA}$             | $V_{CCA}$               | 79         | GND                   | GND                   |
| 28         | GND                   | GND                     | 80         | NC                    | NC                    |
| 29         | I/O                   | I/O                     | 81         | I/O                   | I/O                   |
| 30         | TRST                  | TRST                    | 82         | HCLK                  | HCLK                  |
| 31         | I/O                   | I/O                     | 83         | I/O                   | V <sub>CCI</sub>      |
| 32         | I/O                   | I/O                     | 84         | I/O                   | QCLKB                 |
| 33         | I/O                   | I/O                     | 85         | I/O                   | I/O                   |
|            |                       |                         |            |                       |                       |
| 34         | I/O                   | I/O                     | 86         | I/O                   | I/O                   |
| 35         | I/O                   | I/O                     | 87         | I/O                   | I/O                   |
| 36         | I/O                   | I/O                     | 88         | I/O                   | I/O                   |
| 37         | I/O                   | I/O                     | 89         | I/O                   | I/O                   |
| 38         | I/O                   | I/O                     | 90         | I/O                   | I/O                   |
| 39         | I/O                   | I/O                     | 91         | I/O                   | I/O                   |
| 40         | $V_{CCI}$             | $V_{CCI}$               | 92         | I/O                   | I/O                   |
| 41         | V <sub>CCA</sub>      | V <sub>CCA</sub>        | 93         | I/O                   | I/O                   |
| 42         | I/O                   | I/O                     | 94         | I/O                   | I/O                   |
| 43         | I/O                   | I/O                     | 95         | I/O                   | I/O                   |
| 44         | I/O                   | I/O                     | 96         | I/O                   | I/O                   |
| 45         | I/O                   | I/O                     | 97         | I/O                   | I/O                   |
|            |                       |                         |            |                       |                       |
| 46         | I/O                   | I/O                     | 98         | V <sub>CCI</sub>      | V <sub>CCI</sub>      |
| 47         | I/O                   | I/O                     | 99         | I/O                   | I/O                   |
| 48         | I/O                   | I/O                     | 100        | I/O                   | I/O                   |
| 49         | I/O                   | I/O                     | 101        | I/O                   | I/O                   |
| 50         | I/O                   | I/O                     | 102        | I/O                   | I/O                   |
| 51         | I/O                   | I/O                     | 103        | TDO, I/O              | TDO, I/O              |
| 52         | GND                   | GND                     | 104        | I/O                   | I/O                   |

Note: Pin 65 is a No Connect (NC) on Commercial A54SX32S-PQ208.




# 208-Pin CQFP (continued)

| Pin Number | RT54SX32S<br>Function | RT54SX72S<br>Function |
|------------|-----------------------|-----------------------|
| 105        | GND                   | GND                   |
| 106        | I/O                   | I/O                   |
| 107        | I/O                   | I/O                   |
| 108        | I/O                   | I/O                   |
| 109        | I/O                   | I/O                   |
| 110        | I/O                   | I/O                   |
| 111        | I/O                   | I/O                   |
| 112        | I/O                   | I/O                   |
| 113        | I/O                   | I/O                   |
| 114        | $V_{CCA}$             | $V_{CCA}$             |
| 115        | V <sub>CCI</sub>      | V <sub>CCI</sub>      |
| 116        | I/O                   | GND                   |
| 117        | I/O                   | $V_{CCA}$             |
| 118        | I/O                   | I/O                   |
| 119        | I/O                   | I/O                   |
| 120        | I/O                   | I/O                   |
| 121        | I/O                   | I/O                   |
| 122        | I/O                   | I/O                   |
| 123        | I/O                   | I/O                   |
| 124        | I/O                   | I/O                   |
| 125        | I/O                   | I/O                   |
| 126        | I/O                   | I/O                   |
| 127        | I/O                   | I/O                   |
| 128        | I/O                   | I/O                   |
| 129        | GND                   | GND                   |
| 130        | $V_{CCA}$             | $V_{CCA}$             |
| 131        | GND                   | GND                   |
| 132        | NC                    | I/O                   |
| 133        | I/O                   | I/O                   |
| 134        | I/O                   | I/O                   |
| 135        | I/O                   | I/O                   |
| 136        | I/O                   | I/O                   |
| 137        | I/O                   | I/O                   |
| 138        | I/O                   | I/O                   |
| 139        | I/O                   | I/O                   |
| 140        | I/O                   | I/O                   |
| 141        | I/O                   | I/O                   |
| 142        | I/O                   | I/O                   |
| 143        | I/O                   | I/O                   |
| 144        | I/O                   | I/O                   |
| 145        | $V_{CCA}$             | $V_{CCA}$             |
| 146        | GND                   | GND                   |
| 147        | I/O                   | I/O                   |
| 148        | $V_{CCI}$             | $V_{CCI}$             |
| 149        | I/O                   | I/O                   |
| 150        | I/O                   | I/O                   |
| 151        | I/O                   | I/O                   |
| 152        | I/O                   | I/O                   |
| 153        | I/O                   | I/O                   |
| 154        | I/O                   | I/O                   |
| 155        | I/O                   | I/O                   |
| 156        | I/O                   | I/O                   |

| Pin Number | RT54SX32S<br>Function | RT54SX72S<br>Function |
|------------|-----------------------|-----------------------|
| 157        | GND                   | GND                   |
| 158        | I/O                   | I/O                   |
| 159        | I/O                   | I/O                   |
| 160        | I/O                   | I/O                   |
| 161        | I/O                   | I/O                   |
| 162        | I/O                   | I/O                   |
| 163        | I/O                   | I/O                   |
| 164        | V <sub>CCI</sub>      | V <sub>CCI</sub>      |
| 165        | I/O                   | I/O                   |
| 166        | I/O                   | I/O                   |
| 167        | I/O                   | I/O                   |
| 168        | I/O                   | I/O                   |
| 169        | I/O                   | I/O                   |
| 170        | I/O                   | I/O                   |
| 171        | I/O                   | I/O                   |
| 172        | I/O                   | I/O                   |
| 173        | I/O                   | I/O                   |
| 174        | I/O                   | I/O                   |
| 175        | I/O                   | I/O                   |
| 176        | I/O                   | I/O                   |
| 177        | I/O                   | I/O                   |
| 178        | I/O                   | QCLKD                 |
| 179        | I/O                   | I/O                   |
| 180        | CLKA                  | CLKA                  |
| 181        | CLKB                  | CLKB                  |
| 182        | NC                    | NC                    |
| 183        | GND                   | GND                   |
| 184        | $V_{CCA}$             | $V_{CCA}$             |
| 185        | GND                   | GND                   |
| 186        | PRA, I/O              | PRA, I/O              |
| 187        | I/O                   | $V_{CCI}$             |
| 188        | I/O                   | I/O                   |
| 189        | I/O                   | I/O                   |
| 190        | I/O                   | QCLKC                 |
| 191        | I/O                   | I/O                   |
| 192        | I/O                   | I/O                   |
| 193        | I/O                   | I/O                   |
| 194        | I/O                   | I/O                   |
| 195        | I/O                   | I/O                   |
| 196        | I/O                   | I/O                   |
| 197        | I/O                   | I/O                   |
| 198        | I/O                   | I/O                   |
| 199        | I/O                   | I/O                   |
| 200        | I/O                   | I/O                   |
| 201        | V <sub>CCI</sub>      | V <sub>CCI</sub>      |
| 202        | I/O                   | I/O                   |
| 203        | I/O                   | I/O                   |
| 204        | I/O                   | I/O                   |
| 205        | I/O                   | I/O                   |
| 206        | I/O                   | I/O                   |
| 207        | 1/0                   | I/O                   |
| 208        | TCK, I/O              | TCK, I/O              |

# Package Pin Assignments (continued)

# 256-Pin CQFP (Top View)





# 256-Pin CQFP

| Pin Number | RT54SX32S<br>Function | RT54SX72S<br>Function |
|------------|-----------------------|-----------------------|
| 1          | GND                   | GND                   |
| 2          | TDI, I/O              | TDI, I/O              |
| 3          | I/O                   | I/O                   |
| 4          | I/O                   | I/O                   |
| 5          | I/O                   | I/O                   |
| 6          | I/O                   | I/O                   |
| 7          | I/O                   | I/O                   |
| 8          | I/O                   | I/O                   |
| 9          | I/O                   | I/O                   |
| 10         | I/O                   | I/O                   |
| 11         | TMS                   | TMS                   |
| 12         | I/O                   | I/O                   |
| 13         | I/O                   | I/O                   |
| 14         | I/O                   | I/O                   |
| 15         | I/O                   | I/O                   |
| 16         | I/O                   | I/O                   |
| 17         | I/O                   | V <sub>CCI</sub>      |
| 18         | I/O                   | I/O                   |
| 19         | I/O                   | I/O                   |
| 20         | I/O                   | I/O                   |
| 21         | I/O                   | I/O                   |
| 22         | I/O                   | I/O                   |
| 23         | I/O                   | I/O                   |
| 24         | I/O                   | I/O                   |
| 25         | I/O                   | I/O                   |
| 26         | I/O                   | I/O                   |
| 27         | I/O                   | I/O                   |
| 28         | $V_{CCI}$             | $V_{CCI}$             |
| 29         | GND                   | GND                   |
| 30         | $V_{CCA}$             | $V_{CCA}$             |
| 31         | GND                   | GND                   |
| 32         | I/O                   | I/O                   |
| 33         | I/O                   | I/O                   |
| 34         | TRST                  | TRST                  |
| 35         | I/O                   | I/O                   |
| 36         | I/O                   | $V_{CCA}$             |
| 37         | I/O                   | GND                   |
| 38         | I/O                   | I/O                   |
| 39         | I/O                   | I/O                   |
| 40         | I/O                   | I/O                   |
| 41         | I/O                   | I/O                   |
| 42         | I/O                   | I/O                   |
| 43         | I/O                   | I/O                   |
| 44         | I/O                   | I/O                   |
| 45         | I/O                   | I/O                   |
| 46         | $V_{CCA}$             | $V_{CCA}$             |
| 47         | I/O                   | $V_{CCI}$             |
| 48         | I/O                   | I/O                   |
| 49         | I/O                   | I/O                   |
| 50         | I/O                   | I/O                   |
| 51         | I/O                   | I/O                   |
| 52         | I/O                   | I/O                   |

| Pin Number | RT54SX32S<br>Function | RT54SX72S<br>Function |
|------------|-----------------------|-----------------------|
| 53         | I/O                   | I/O                   |
| 54         | I/O                   | I/O                   |
| 55         | I/O                   | I/O                   |
| 56         | I/O                   | GND                   |
| 57         | I/O                   | I/O                   |
| 58         | I/O                   | I/O                   |
| 59         | GND                   | GND                   |
| 60         | I/O                   | I/O                   |
| 61         | I/O                   | I/O                   |
| 62         | I/O                   | I/O                   |
| 63         | I/O                   | I/O                   |
| 64         | I/O                   | I/O                   |
| 65         | I/O                   | I/O                   |
| 66         | I/O                   | I/O                   |
| 67         | I/O                   | I/O                   |
| 68         | I/O                   | I/O                   |
| 69         | I/O                   | I/O                   |
| 70         | I/O                   | I/O                   |
| 71         | I/O                   | I/O                   |
| 72         | I/O                   | I/O                   |
| 73         | I/O                   | V <sub>CCI</sub>      |
| 74         | I/O                   | I/O                   |
| 75         | I/O                   | I/O                   |
| 76         | I/O                   | I/O                   |
| 77         | I/O                   | I/O                   |
| 78         | I/O                   | I/O                   |
| 79         | I/O                   | I/O                   |
| 80         | I/O                   | I/O                   |
| 81         | I/O                   | I/O                   |
| 82         | I/O                   | I/O                   |
| 83         | I/O                   | I/O                   |
| 84         | I/O                   | I/O                   |
| 85         | I/O                   | I/O                   |
| 86         | I/O                   | I/O                   |
| 87         | I/O                   | I/O                   |
| 88         | I/O                   | I/O                   |
| 89         | I/O                   | QCLKA                 |
| 90         | PRB, I/O              | PRB, I/O              |
| 91         | GND                   | GND                   |
| 92         | $V_{CCI}$             | V <sub>CCI</sub>      |
| 93         | GND                   | GND                   |
| 94         | $V_{CCA}$             | $V_{CCA}$             |
| 95         | I/O                   | I/O                   |
| 96         | HCLK                  | HCLK                  |
| 97         | I/O                   | I/O                   |
| 98         | I/O                   | QCLKB                 |
| 99         | I/O                   | I/O                   |
| 100        | I/O                   | I/O                   |
| 101        | I/O                   | I/O                   |
| 102        | I/O                   | I/O                   |
| 103        | I/O                   | I/O                   |
| 104        | I/O                   | I/O                   |

# 256-Pin CQFP (continued)

| Pin Number | RT54SX32S<br>Function | RT54SX72S<br>Function |
|------------|-----------------------|-----------------------|
| 105        | I/O                   | I/O                   |
| 106        | I/O                   | I/O                   |
| 107        | I/O                   | I/O                   |
| 108        | I/O                   | I/O                   |
| 109        | I/O                   | I/O                   |
| 110        | GND                   | GND                   |
| 111        | I/O                   | I/O                   |
| 112        | I/O                   | I/O                   |
| 113        | I/O                   | I/O                   |
| 114        | I/O                   | I/O                   |
| 115        | I/O                   | I/O                   |
| 116        | I/O                   | I/O                   |
| 117        | I/O                   | I/O                   |
| 118        | I/O                   | I/O                   |
| 119        | I/O                   | I/O                   |
| 120        | I/O                   | V <sub>CCI</sub>      |
| 121        | I/O                   | I/O                   |
| 122        | I/O                   | I/O                   |
| 123        | I/O                   | I/O                   |
| 124        | I/O                   | I/O                   |
| 125        | I/O                   | I/O                   |
| 126        | TDO, I/O              | TDO, I/O              |
| 127        | I/O                   | 1/O                   |
| 128        | GND                   | GND                   |
| 129        | 1/0                   | 1/0                   |
| 130        | I/O                   | I/O                   |
| 131        | I/O                   | I/O                   |
| 131        | I/O                   | I/O                   |
| 133        | I/O                   | I/O                   |
| 134        | I/O                   | I/O                   |
| 135        | I/O                   | I/O                   |
|            | I/O                   | I/O                   |
| 136        |                       |                       |
| 137        | I/O                   | I/O                   |
| 138        | I/O                   | I/O                   |
| 139        | I/O                   | I/O                   |
| 140        | I/O                   | I/O                   |
| 141        | V <sub>CCA</sub>      | $V_{CCA}$             |
| 142        | 1/0                   | V <sub>CCI</sub>      |
| 143        | I/O                   | GND                   |
| 144        | I/O                   | V <sub>CCA</sub>      |
| 145        | I/O                   | I/O                   |
| 146        | I/O                   | I/O                   |
| 147        | I/O                   | I/O                   |
| 148        | I/O                   | I/O                   |
| 149        | I/O                   | I/O                   |
| 150        | I/O                   | I/O                   |
| 151        | I/O                   | I/O                   |
| 152        | I/O                   | I/O                   |
| 153        | I/O                   | I/O                   |
| 154        | I/O                   | I/O                   |
| 155        | I/O                   | I/O                   |
| 156        | I/O                   | I/O                   |

| Pin Number | RT54SX32S<br>Function | RT54SX72S<br>Function |
|------------|-----------------------|-----------------------|
| 157        | I/O                   | I/O                   |
| 158        | GND                   | GND                   |
| 159        | NC                    | NC                    |
| 160        | GND                   | GND                   |
| 161        | $V_{CCI}$             | V <sub>CCI</sub>      |
| 162        | I/O                   | V <sub>CCA</sub>      |
| 163        | I/O                   | I/O                   |
| 164        | I/O                   | I/O                   |
| 165        | I/O                   | I/O                   |
| 166        | I/O                   | I/O                   |
| 167        | I/O                   | I/O                   |
| 168        | I/O                   | I/O                   |
| 169        | I/O                   | I/O                   |
| 170        | I/O                   | I/O                   |
| 171        | I/O                   | I/O                   |
| 172        | I/O                   | I/O                   |
| 173        | I/O                   | I/O                   |
| 174        | $V_{CCA}$             | $V_{CCA}$             |
| 175        | GND                   | GND                   |
| 176        | GND                   | GND                   |
| 177        | I/O                   | I/O                   |
| 178        | I/O                   | I/O                   |
| 179        | I/O                   | I/O                   |
| 180        | I/O                   | I/O                   |
| 181        | I/O                   | I/O                   |
| 182        | I/O                   | I/O                   |
| 183        | I/O                   | V <sub>CCI</sub>      |
| 184        | I/O                   | I/O                   |
| 185        | I/O                   | I/O                   |
| 186        | I/O                   | I/O                   |
| 187        | I/O                   | I/O                   |
| 188        | I/O                   | I/O                   |
| 189        | GND                   | GND                   |
| 190        | I/O                   | I/O                   |
| 191        | I/O                   | I/O                   |
| 192        | I/O                   | I/O                   |
| 193        | I/O                   | I/O                   |
| 194        | I/O                   | I/O                   |
| 195        | I/O                   | I/O                   |
| 196        | I/O                   | I/O                   |
| 197        | I/O                   | I/O                   |
| 198        | I/O                   | I/O                   |
| 199        | I/O                   | I/O                   |
| 200        | I/O                   | I/O                   |
| 201        | I/O                   | I/O                   |
| 202        | I/O                   | $V_{CCI}$             |
| 203        | I/O                   | I/O                   |
| 204        | I/O                   | I/O                   |
| 205        | I/O                   | I/O                   |
| 206        | I/O                   | I/O                   |
| 207        | I/O                   | I/O                   |
| 200        | 1/0                   | 1/0                   |

208

I/O

I/O



#### 256-Pin CQFP (continued)

| 230-Fill Our | r (continued)         |                       |
|--------------|-----------------------|-----------------------|
| Pin Number   | RT54SX32S<br>Function | RT54SX72S<br>Function |
| 209          | I/O                   | I/O                   |
| 210          | I/O                   | I/O                   |
| 211          | I/O                   | I/O                   |
| 212          | I/O                   | I/O                   |
| 213          | I/O                   | I/O                   |
| 214          | I/O                   | I/O                   |
| 215          | I/O                   | I/O                   |
| 216          | I/O                   | I/O                   |
| 217          | I/O                   | I/O                   |
| 218          | I/O                   | QCLKD                 |
| 219          | CLKA                  | CLKA                  |
| 220          | CLKB                  | CLKB                  |
| 221          | $V_{CCI}$             | $V_{CCI}$             |
| 222          | GND                   | GND                   |
| 223          | NC                    | NC                    |
| 224          | GND                   | GND                   |
| 225          | PRA, I/O              | PRA, I/O              |
| 226          | I/O                   | I/O                   |
| 227          | I/O                   | I/O                   |
| 228          | I/O                   | $V_{CCA}$             |
| 229          | I/O                   | I/O                   |
| 230          | I/O                   | I/O                   |
| 231          | I/O                   | QCLKC                 |
| 232          | I/O                   | I/O                   |

| Pin Number | RT54SX32S<br>Function | RT54SX72S<br>Function |
|------------|-----------------------|-----------------------|
| 233        | I/O                   | I/O                   |
| 234        | I/O                   | I/O                   |
| 235        | I/O                   | I/O                   |
| 236        | I/O                   | I/O                   |
| 237        | I/O                   | I/O                   |
| 238        | I/O                   | I/O                   |
| 239        | I/O                   | I/O                   |
| 240        | GND                   | GND                   |
| 241        | I/O                   | I/O                   |
| 242        | I/O                   | I/O                   |
| 243        | I/O                   | I/O                   |
| 244        | I/O                   | I/O                   |
| 245        | I/O                   | I/O                   |
| 246        | I/O                   | I/O                   |
| 247        | I/O                   | I/O                   |
| 248        | I/O                   | I/O                   |
| 249        | I/O                   | $V_{CCI}$             |
| 250        | I/O                   | I/O                   |
| 251        | I/O                   | I/O                   |
| 252        | I/O                   | I/O                   |
| 253        | I/O                   | I/O                   |
| 254        | I/O                   | I/O                   |
| 255        | I/O                   | I/O                   |
| 256        | TCK, I/O              | TCK, I/O              |

# **List of Changes**

The following table lists critical changes that were made in the current version of the document.

| Previous version | Changes in current version (v6.0)                                                                                                                                                                                                                                      | Page |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                  | The TRSTB pin was incorrectly named and changed to TRST.                                                                                                                                                                                                               | All  |
|                  | In the "RT54SX-S Product Profile" section on page 1, the User I/Os have changed.                                                                                                                                                                                       | 1    |
|                  | In the "Ceramic Device Resources" section on page 2, the User I/Os have changed.                                                                                                                                                                                       | 2    |
|                  | The Clock Networks section has changed to "Clock Resources" section on page 8.                                                                                                                                                                                         | 8    |
|                  | The "TRST pin" section on page 10 has changed.                                                                                                                                                                                                                         | 10   |
| Advanced v0.1.1  | The "Design Considerations" section on page 11 Design Considerations section has changed.                                                                                                                                                                              | 11   |
| ravanood vo      | In the "2.5V/3.3V/5.0V Operating Conditions" section on page 12 section, the "Absolute Maximum Ratings <sup>1</sup> " section on page 12 changed. The I <sub>IO</sub> row containing the I/O Source Sink Current was deleted.                                          | 12   |
|                  | Equation 2 in the "Power Dissipation" section on page 15 was corrected.                                                                                                                                                                                                | 15   |
|                  | Note that the "Package Characteristics and Mechanical Drawings" section has been eliminated from the data sheet. The mechanical drawings are now contained in a separate document, "Package Characteristics and Mechanical Drawings," available on the Actel web site. |      |

# **Data Sheet Categories**

In order to provide the latest information to designers, some data sheets are published before data has been fully characterized. These data sheets are marked as "Advanced" or Preliminary" data sheets. The definition of these categories are as follows:

#### Advanced

The data sheet contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

#### **Preliminary**

The data sheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

# Unmarked (production)

The data sheet contains information that is considered to be final.



Actel and the Actel logo are registered trademarks of Actel Corporation.

All other trademarks are the property of their owners.



http://www.actel.com

# Actel Europe Ltd.

Daneshill House, Lutyens Close Basingstoke, Hampshire RG24 8AG United Kingdom

**Tel:** +44-(0)125-630-5600 **Fax:** +44-(0)125-635-5420

# **Actel Corporation**

955 East Arques Avenue Sunnyvale, California 94086 USA

**Tel:** (408) 739-1010 **Fax:** (408) 739-1540

# **Actel Asia-Pacific**

EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan

**Tel:** +81-(0)3-3445-7671 **Fax:** +81-(0)3-3445-7668