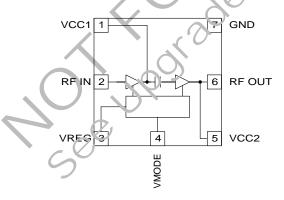
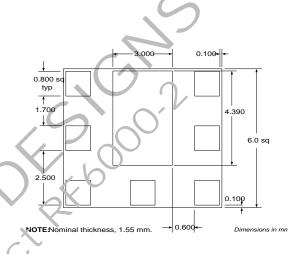


3V 900MHz LINEAR AMPLIFIER MODULE

Typical Applications


- 3V CDMA/AMPS Cellular Handsets
- 3V CDMA2000/1X Cellular Handsets
- Compatible with Qualcomm Chipset
- Spread-Spectrum Systems

Product Description


The RF3117 is a high-power, high-efficiency linear amplifier module targeting 3V handheld systems. The device is manufactured on an advanced Gallium Arsenide Heterojunction Bipolar Transistor (HBT) process, and has been designed for use as the final RF amplifier in dual-mode 3V CDMA/AMPS handheld digital cellular equipment, spread-spectrum systems, and other applications in the 824MHz to 849MHz band. The RF3117 has a digital control line for low power application to reduce the current drain. The device is self-contained with 50Ω input and output that is matched to obtain optimum power, efficiency, and linearity characteristics. The module is an ultra-small 6mmx6mm land grid array with backside ground.

Optimum Technology Matching® Applied

- ☐ Si BJT
 ☐ Si Bi-CMOS
- ✓ GaAs HBT
 ☐ SiGe HBT
- ☐ GaAs MESFET☐ Si CMOS
- ☐ GaInP/HBT
- ☐ GaN HEMT
- SiGe Bi-CMCS

Functional Block Diagram

Package Style: LGM (6mmx6mm)

Features

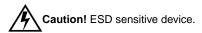
- Input/Output Internally Matched @ 50Ω
- Single 3V Supply
- 30dBm Linear Output Power
- 30dB Linear Gain
- 33% Linear Efficiency
- 55mA Idle Current

Ordering Information

RF3117 3V 900MHz Linear Amplifier Module RF3117 PCBA Fully Assembled Evaluation Board

 RF Micro Devices, Inc.
 Tel (336) 664 1233

 7628 Thorndike Road
 Fax (336) 664 0454


 Greensboro, NC 27409, USA
 http://www.rfmd.com

Rev A1 020701 2-1

RF3117

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage (RF off)	+8.0	V_{DC}
Supply Voltage (P _{OUT} ≤31dBm)	+5.2	V_{DC}
Control Voltage (V _{REG})	+4.2	V_{DC}
Input RF Power	+10	dBm
Mode Voltage (V _{MODE})	+3.5	V_{DC}
Operating Case Temperature	-30 to +110	°C
Storage Temperature	-30 to +150	℃

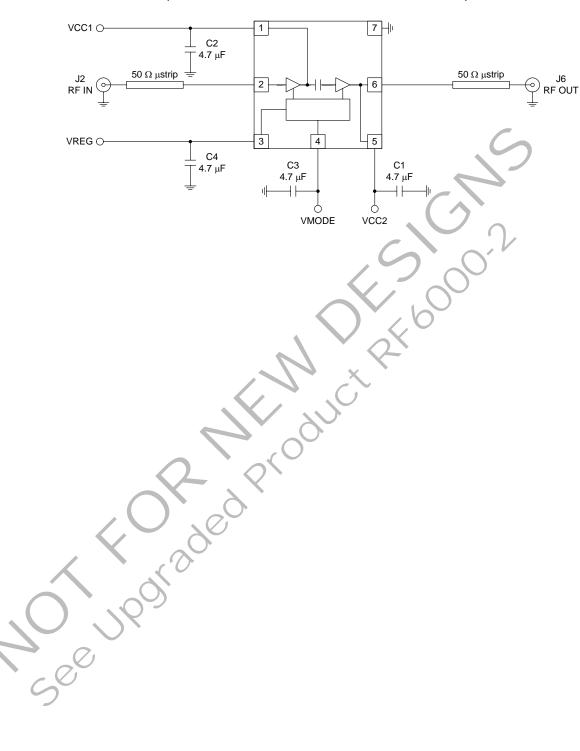
RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Parameter	Specification			Unit	Condition	
Farameter	Min.	Тур.	Max.	Ullit	Condition	
High Bowen Ctate					Typical Performance at V _{CC} =3.2V,	
High Power State					V _{REG} =3V, T _{AMB} =25°C,	
(V _{MODE} Low)					Frequency=824MHz to 849MHz (unless otherwise specified)	
Frequency Range	824		849	MHz	(unless otherwise specified)	
Linear Gain	27	30		dB		
Second Harmonic		-35		dBc		
Third Harmonic		-40		dBc		
Maximum Linear Output Power (CDMA Modulation)	29	30		dBm		
Total Linear Efficiency		33		%	V_{CC} =3.2V, P_{OUT} =29dBm	
				Y	(room temperature)	
Adjacent Channel Power Rejection		-46.5	-45.0	dBc	ACPR @ 885kHz, P _{OUT} =Max P _{OUT}	
		-59	-57	dBc	ACPR @ 1980kHz, P _{OUT} =Max P _{OUT}	
Input VSWR		1.8:1	. (J		
Output VSWR			10:1		No damage.	
			6:1		No oscillations. >-70dBc	
Noise Power		-135		dBm/Hz	At 45MHz offset.	
			\cup		Typical Performance at V _{CC} =3.2V,	
Low Power State	< 1				V _{REG} =3V, T _{AMB} =25°C,	
(V _{MODE} High)		. X			Frequency=824MHz to 849MHz	
					(unless otherwise specified)	
Frequency Range	824	0	849	MHz		
Linear Gain	17.5	21		dB		
Second Harmonic		-35		dBc		
Third Harmonic		-40		dBc		
Maximum Linear Output Power (CDMA Modulation)	16	20		dBm		
Adjacent Channel Power Rejection	4 5	-52	-44	dBc	ACPR @ 885kHz, P _{OUT} =Max P _{OUT}	
		-62	-55	dBc	ACPR @ 1980kHz, P _{OUT} =Max P _{OUT}	
Output VSWR			10:1		No damage.	
0.			6:1		No oscillations. >-70dBc	

2-2 Rev A1 020701

Parameter	Specification			Unit	Condition	
	Min.	Тур.	Max.	Unit	Condition	
					Typical Performance at V _{CC} =3.2V,	
FM Mode					V _{REG} =3V, T _{AMB} =25°C,	
· ··· ·············					Frequency=824MHz to 849MHz	
_			0.40		(unless otherwise specified)	
Frequency Range	824	20	849	MHz		
Gain Second Harmonic		30 -32		dB dBc		
Third Harmonic		-32 -40		dBc		
Max CW Output Power	31.5	-40		dBm		
Total Efficiency (AMPS mode)	01.0	42		%	P _{OUT} =31.5dBm (room temperature)	
Input VSWR			<2:1	,,,	001	
Output VSWR			10:1		No damage.	
			6:1		No oscillations. >-70 dBc	
DC Supply					T _{AMB} =25°C	
Supply Voltage Range	3.2	3.7	4.2	V		
Quiescent Current		160	240	mA	V_{MODE} =Low, V_{REG} =3V, V_{CC} =3.2V	
		55	65	mA	V _{MODE} =High, V _{REG} =3V, V _{CC} =3.2V	
V _{REG} Current			10	mA	V _{MODE} =High	
V _{MODE} Current			1	mA		
Turn On/Off Time			<40	μS	V _{REG} switch from Low to High,	
					I _{CC} to within 90% of the final value,	
) / \	P _{OUT} within 1 dB of the final value	
Total Current (Power Down)		3	10	μА	V _{REG} =Low, V _{MODE} =Low	
V _{REG} "Low" Voltage	0		0.5	V-		
V _{REG} "High" Voltage	2.9	3.0	3.1	V		
V _{MODE} "Low" Voltage	0		0.5	V		
V _{MODE} "High" Voltage	2.0	\ /.	3.0	V		
	5	7	290			
	2	S				
30 JP) \ (20				
	7					
<i></i>	('0'					
)					
9						

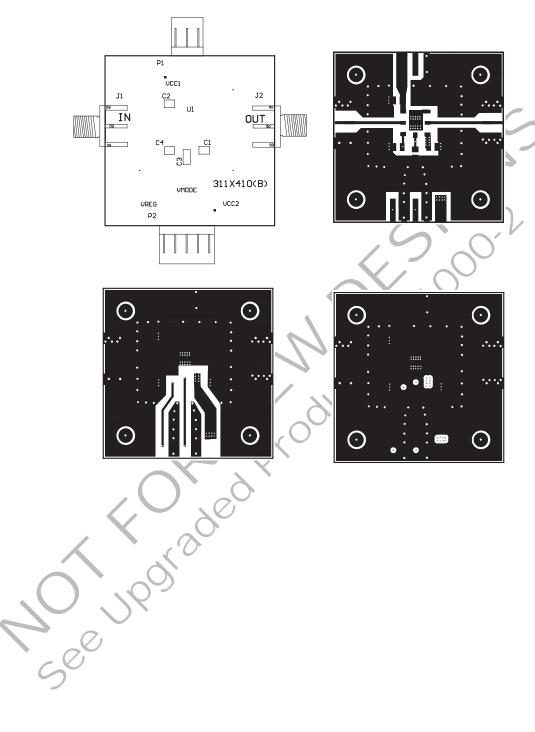
Rev A1 020701 2-3


RF3117

Pin	Function	Description	Interface Schematic				
1	VCC1	First stage collector supply. A low frequency decoupling capacitor (e.g., $4.7\mu F$) is required.					
2	RF IN	RF input internally matched to 50Ω . This input is internally AC-coupled.					
3	VREG	Regulated voltage supply for amplifier bias. In Power Down mode, both V _{REG} and V _{MODE} need to be LOW (<0.5 V).					
4	VMODE	For nominal operation (High Power Mode), V _{MODE} is set LOW. When set HIGH, devices are turned off to improve efficiency.					
5	VCC2	Output stage collector supply. A low frequency decoupling capacitor (e.g., $4.7\mu F$) is required.					
6	RF OUT	RF output internally matched to 50Ω . This output is internally AC-coupled.	6				
7	GND	Ground connection. Connect to package base ground. For best performance, keep traces physically short and connect immediately to ground plane.					
Pkg Base	GND	Ground connection. The backside of the package should be soldered to a top side ground pad which is connected to the ground plane with multiple vias. The pad should have a short thermal path to the ground plane.					
We have the second of the seco							

2-4 Rev A1 020701

Evaluation Board Schematic


(Download Bill of Materials from www.rfmd.com.)

2-5 Rev A1 020701

Evaluation Board Layout Board Size 1.5" x 1.5"

Board Thickness 0.032", Board Material FR-4, Multi-Layer, Ground Plane at 0.014"

2-6 Rev A1 020701