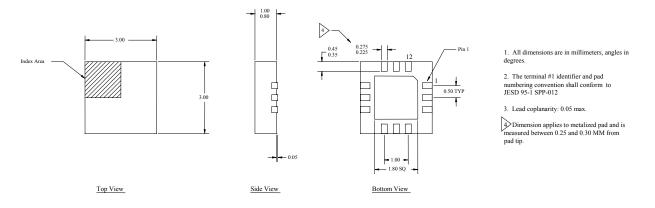


Applications

- 802.11a WLAN
- HiperLAN/2 WLAN
- U-NII fixed wireless equipment

Functional Block Diagram

Advanced RFSP5034


5.15-5.85 GHz U-NII Power Amplifier

Product Description

The RFSP5034 power amplifier is a high-performance GaAs HBT IC designed for use in transmit applications in the 5.15-5.85 GHz frequency band. With a P1dB of 26.5 dBm, the device is ideal as a final stage for wireless LAN applications requiring high transmit linearity. The part demonstrates very low error vector magnitude (EVM) at the full 54 Mbps data rate for 802.11a. The input of the PA is matched to 50 ohms and the output can be easily matched for optimum linearity and power performance at the desired frequency of operation between 5.15 and 5.85 GHz. The part operates off a single +3.3V supply.

Product Features

- 26.5 dBm P1dB@3.3V
- 23 dB gain
- 2.0 % EVM @ P_{OUT} = +21 dBm with 54 Mbps OFDM signal
- 270 mA @ P_{OUT} = +21 dBm with 54 Mbps OFDM signal
- Single +3.3V supply voltage
- Input matched to 50 ohms
- PA power on/off logic

d 3x3 mm Package Outline

Advanced RFSP5034

5.15-5.85 GHz U-NII Power Amplifier

Parameter ¹	Specification			Unit	Condition
	Min.	Тур.	Max.	Unit	Condition
Overall					
Frequency Range	5150		5850	MHz	
Output P1dB		26.5		dBm	
Gain		23		dB	$P_{OUT} = +21 \text{ dBm}$
Error Vector Magnitude (EVM) ²		2.0		%	$P_{OUT} = +21 \text{ dBm}$; 54 Mbps OFDM signal
Gain Flatness		±0.5		dB	Across 200 MHz Band
Harmonics					
2 nd Harmonic	i i	-30	i	dBc	@ P1dB
3 rd Harmonic	ĺ	-30	ĺ	dBc	@ P1dB
Spurious (Stability) ³	İ	-60	İ	dBc/30 kHz	$P_{OUT} = -20 \text{ dBm to P1dB}$
Reverse Isolation	ĺ	35		dB	
Noise Figure		6		dB	
Input Return Loss	10			dB	
Output Return Loss	10			dB	With matching capacitor
Power Supply					
Operating Voltage	ĺĺ	3.3		V	
Current Consumption		270		mA	$P_{OUT} = +21 \text{ dBm}$; 54 Mbps OFDM signal
Shutdown Control					
Device On Logic High	ĺ	3.3		V	
Device Off Logic Low	ĺ		0.7	V	
Device Off Current	İ		1	uA	
Turn-On Time			500	ns	With 50Ω source
Turn-Off Time			500	ns	With 50Ω source

Note 1: Test Conditions: $V_{CC} = 3.3V$, Freq. = 5250 MHz, T = 25 °C, Small Signal Conditions unless otherwise stated. Note 2: Increase in EVM over system EVM floor.

Note 2: Load VSWR is set to 7:1 and the angle is varied 360 degrees.

Absolute Maximum Ratings

_ 110001010 11000101011101100100						
Parameter	Rating	Unit				
DC Power Supply	6.0	V				
DC Supply Current	800	mA				
Maximum RF input level	7	dBm				
Operating Ambient Temperature	-40 to +85	°C				
Storage Temperature	-55 to +150	°C				

The information provided herein is believed to be reliable; however, RF Solutions assumes no responsibility for inaccuracies or omissions. RF Solutions assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. RF Solutions does not authorize or warrant any RF Solutions product for use in life support devices and/or systems.

