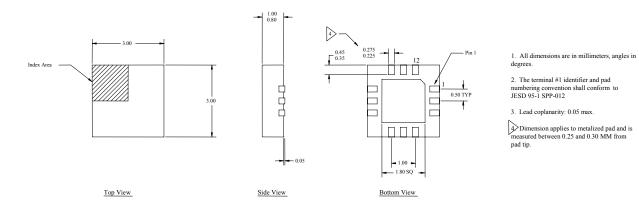


Preliminary RFSP2010

2.4-2.5 GHz Power Amplifier

Applications

- 802.11b/g WLAN
- 2.4 GHz ISM band wireless equipment


₫ Functional Block Diagram

Product Description

The RFSP2010 power amplifier is a high-performance GaAs HBT IC designed for use in transmit applications in the 2.4-2.5 GHz frequency band. With a P1dB of 25 dBm, the device is ideal as a final stage for wireless LAN applications requiring high transmit linearity. Designed with propriety linearizing techniques, the part is operable closer to P-1dB, which enables the device to achieve a specific error vector magnitude (EVM) with less backoff. The PA exhibits unparalleled linearity and efficiency for both 802.11b- and 802.11g-based WLAN systems. The part operates off a single +3.3V supply.

Product Features

- 25 dBm P1dB@3.3V
- 21.5 dB gain
- 1.5 % EVM @ P_{OUT} = +18 dBm with 54 Mbps OFDM signal
- 95 mA @ P_{OUT} = +18 dBm with 54 Mbps OFDM signal
- Single +3.3V supply voltage
- PA power on/off logic
- Input and output matched to 50 ohms

₫ 3x3 mm Package Outline

Preliminary RFSP2010

2.4-2.5 GHz U-NII Power Amplifier

Parameter ¹	Specification			I I m!A	Condition	
raiametei	Min.	Min. Typ.	Max.	Unit	Condition	
Overall						
Frequency Range	2400		2500	MHz		
Output P1dB		25		dBm		
Gain		21.5		dB	$P_{OUT} = +18 \text{ dBm}$	
Error Vector Magnitude ²		1.5		%	$P_{OUT} = +18 \text{ dBm}$; 54 Mbps OFDM signal	
Gain Flatness		±0.5	Ì	dB	Across 100 MHz Band	
Harmonics						
2 nd Harmonic		-27		dBc	@ P1dB	
3 rd Harmonic		-45		dBc	@ P1dB	
Spurious (Stability) ³		-60		dBc/30 kHz	$P_{OUT} = -20 \text{ dBm to P1dB}$	
Reverse Isolation	35			dB		
Input Return Loss	10		Ì	dB		
Output Return Loss	10		Ì	dB	With matching capacitor	
Power Supply						
Operating Voltage		3.3		V		
Current Consumption	ĺ	95		mA	$P_{OUT} = +18 \text{ dBm}$; 54 Mbps OFDM signal	
r		180		mA	$P_{OUT} = +24 \text{ dBm}$; meets 802.11b ACPR spec	
Shutdown Control						
Device On Logic High	ĺ	3.3		V		
Device Off Logic Low			0.7	V		
Device Off Current			1	uA		
Turn-On Time			500	ns	With 50Ω source	
Turn-Off Time			500	ns	With 50Ω source	

Note 1: Test Conditions: $V_{CC} = 3.3V$, Freq. = 2450 MHz, T = 25°C, Small Signal Conditions unless otherwise stated.

Note 2: Increase in EVM over system EVM floor.

Note 3: Load VSWR is set to 7:1 and the angle is varied 360 degrees.

Absolute Maximum Ratings

Parameter	Rating	Unit
DC Power Supply	6.0	V
DC Supply Current	400	mA
Maximum RF input level	+7	dBm
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-55 to +150	°C

The information provided herein is believed to be reliable; however, RF Solutions assumes no responsibility for inaccuracies or omissions. RF Solutions assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. RF Solutions does not authorize or warrant any RF Solutions product for use in life support devices and/or systems.

