Preliminary **RF2668** CDMA/FM TRANSMIT MODULATOR, IF AGC, AND UPCONVERTER WITH INTEGRATED PLL #### Typical Applications - CDMA/FM Cellular and PCS Systems - Tri-Mode/Dual-Band CDMA Applications - W-CDMA Systems - Wireless Local Loop Systems - Spread-Spectrum Cordless Phones - High Speed Data Modems #### **Product Description** The RF2668 is an integrated complete quadrature modulator, IF AGC amplifier, upconverter, and PLL, designed for the transmit section of dual-mode CDMA/FM cellular, PCS, and tri-mode CDMA applications. It is designed to modulate baseband I and Q signals, amplify the resulting IF signals while providing 95dB of gain control range, and perform the final upconversion to UHF. Noise Figure, IP₃, and other specifications are designed to be compatible with the IS-98 Interim Standard. This circuit is designed as part of RFMD's newest CDMA chipset, which also includes the RF2667 CDMA/FM Receive IF AGC and Demodulator. The IC is manufactured on an advanced 18GHz F_T Silicon Bipolar process, and is supplied in a 48-lead plastic LQFP package. Optimum Technology Matching® Applied Functional Block Diagram Package Style: LQFP-48_7x7 #### **Features** - Supports Tri-Mode Operation - Digitally Controlled Power Down Modes - 2.7V to 3.3V Operation - Digital First LO Quadrature Divider - Double-Balanced UHF Upconvert Mixer - IF AGC Amp with 95dB Gain Control #### Ordering Information RF2668 CDMA/FM Transmit Modulator, IF AGC, and Upconverter with Integrated PLL RF2668 PCBA-PCS/CEL Fully Assembled Evaluation Boards RF2668 PCBA-DO Fully Assembled Evaluation Boards RF Micro Devices, Inc. Tel (336) 664 1233 7625 Thorndike Road Fax (336) 664 0454 Greensboro, NC 27409, USA http://www.rfmd.com #### **Absolute Maximum Ratings** | • | | | | | | |---------------------------------------|------------------------------|----------|--|--|--| | Parameter | Rating | Unit | | | | | Supply Voltage | -0.5 to +5 | V_{DC} | | | | | Power Down Voltage (V _{PD}) | -0.5 to V _{CC} +0.7 | V | | | | | I and Q Levels, per pin | 1 | V_{PP} | | | | | LO1 Level, balanced | +6 | dBm | | | | | Operating Ambient Temperature | -40 to +85 | °C | | | | | Storage Temperature | -40 to +150 | °C | | | | RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s). | Parameter | Specification | | Unit | Condition | | | |---|---------------|---------------|------|------------------------|--|--| | Parameter | Min. | Тур. | Max. | Unit | Condition | | | I/Q Modulator & AGC | | | | | T=25 °C, V _{CC} =3.0V, Z _{LOAD} =200Ω,
LO1=-10dBm @ 260MHz, IF=130MHz,
I SIG=Q SIG=300mV _{PP} , | | | L/O leaved Fee and a second | | 0.1- 00 | | N41.1- | RF Output externally matched Balanced | | | I/Q Input Impedance | | 0 to 20
80 | | MHz
kΩ | Balanced | | | I/Q Input Impedance I/Q Input Reference Level | | 1.3 | | | Per Pin | | | ' ' ' | 0 | 1.3 | 800 | V _{DC}
MHz | rei riii | | | LO1/FM Frequency Range
LO1/FM Input Level | -15 | -10 | -5 | dBm | | | | LO1/FM Input Impedance | -13 | 200 | -5 | Ω | Balanced | | | Sideband Suppression | 35 | 40 | | dBc | I/Q Amplitude adjusted to within ±20mV | | | Glaceana Suppression | 00 | 27 | | dBc | Unadjusted | | | Carrier Suppression | 40 | 50 | | dBc | I/Q DC Offset adjusted to within ±20mV | | | | | 30 | | dBc | Unadjusted | | | Max Output, FM Mode | +2.5 | +5 | | dBm | V _{GC} =2.4V _{DC} , T=-20°C to +85°C | | | Max Output, CDMA Mode | -3 | 0 | | dBm | V _{GC} =2.4V _{DC} , T=-20°C to +85°C,
IS-95A CDMA Modulation | | | | -2 | 0 | | dBm | ISIG=QSIQ=300mVpp@100kHz | | | Min Output, CDMA Mode | | -95 | -89 | dBm | V _{GC} =0.3V _{DC} , T=-20°C to +85°C,
IS-95A CDMA Modulation | | | Output Power Accuracy | -3 | | +3 | dB | T=-20 to +85 °C, Ref=25 °C | | | Output Fower Accuracy | -3
-2 | | +3 | dB | 1.4V <gc<2.5< td=""></gc<2.5<> | | | Adjacent Channel Power Rejection @ 885kHz | -2 | -60 | 72 | dBc | IS-95A CDMA Modulation POUT = -5dBm | | | Adjacent Channel Power Rejection @ 1.98MHz | | -69 | | dBc | IS-95A CDMA Modulation POUT = -5dBm | | | Output Noise Power | | -117 | -111 | dBm/Hz | P _{OUT} = -1 dBm, T=-20 °C to +85 °C | | | Output Impedance | | 200 | | Ω | Balanced | | | Current Consumption | | 40 | | mA | I/Q modulator and AGC only. | | 5-72 Rev B3 001114 | Davamatav | Specification | | 11 | O and dition | | | |---------------------------|---------------|-----------|------|-----------------|---|--| | Parameter | Min. Typ. Ma | | Max. | Unit | Condition | | | UHF Upconverter | | | | | Output externally matched | | | General | | | | | | | | IF Input Impedance | | 200 | | Ω | Balanced | | | IF Input Frequency Range | 0 | | 400 | MHz | | | | LO2 Input Impedance | | 50 | | Ω | Single Ended | | | LO2 Input Level | -6 | -3 | 0 | dBm | | | | LO2 Input Frequency Range | | | 2.5 | GHz | | | | RF to LO2 Isolation | | 30 | | dB | | | | LO Input VSWR | | <2:1 | | | 50Ω | | | Current Consumption | | 24 | | mA | UHF upconverter only. | | | Cellular | | | | | | | | Conversion Gain | -1.5 | -0.5 | | dB | RF _{OUT} =830MHz | | | Noise Figure (SSB) | | 15 | | dB | RF _{OUT} =830MHz | | | Output IP3 | | +13 | | dBm | P _{IN} =-15dBm per tone, | | | | | | | | 200kHz tone separation, RF _{OUT} =830MHz, | | | | | | | | LO2=960MHz@-3dBm | | | RF Output VSWR | | <2:1 | | | $RF_{OUT} = 830 MHz$ | | | W-CDMA | | | | | | | | Conversion Gain | | -1.5 | | dB | RF _{OUT} =1950MHz | | | Noise Figure | | TBD | | dB | | | | Output IP3 | | 10 | | dBm | P _{IN} =-15dBm per tone, | | | | | | | | 200kHz tone separation, RF _{OUT} =1950MHz, | | | | | | | | LO2=1570MHz@-3dBm | | | RF Output VSWR | | <2:1 | | | RF _{OUT} =1950MHz. See note on eval board | | | | | | | | schematic. | | | Dual Output | | | | | | | | Cellular | | | | | | | | Conversion Gain | -1.5 | -0.5 | | dB | RF _{OUT} =830MHz | | | Noise Figure | | 15 | | dB | RF _{OUT} =830MHz | | | Output IP3 | | 12.5 | | dBm | P _{IN} =-15dBm per tone, | | | | | | | | 200 kHz tone separation, RF _{OUT} =830 MHz, | | | | | | | | LO2=960MHz@-3dBm | | | RF Output VSWR | | <1.5:1 | | | RF _{OUT} =830MHz | | | PCS | | | | | | | | Conversion Gain | -1.5 | -1.0 | | dB | RF _{OUT} =1880MHz | | | Noise Figure | | 15 | | dB | RF _{OUT} =1880MHz | | | Output IP3 | | 10.5 | | dBm | P _{IN} =-15dBm per tone, | | | | | | | | 200 kHz tone separation, RF _{OUT} =1880 MHz, | | | | | | | | LO2=1750MHz@-3dBm | | | RF Output VSWR | | <1.5:2 | | | RF _{OUT} =1880MHz | | | vco | | | | | PLL locked with Loop BW=5kHz, Tank Values: 39nH and SMV1234 varactor. | | | Phase Noise @ 100kHz | | -110 | | dBc/Hz | | | | Current Consumption | | 1 | | mA | | | | PLL | | | | | | | | Charge Pump Current | | | 100 | μΑ | | | | TCXO Input Level | | 0.8 | | V _{PP} | | | | PLL Lock Time | | 4/Loop BW | | S | | | | Current Consumption | | 4 | | mA | PLL only. | | Preliminary | Davamatar | Specification | | 11:4 | 0 | | |-------------------------------|----------------------|-------|----------|------|-----------------------------| | Parameter | Min. | Тур. | Max. | Unit | Condition | | Power Supply | | | | | | | Supply Voltage | 2.7 | 3.0 | 3.3 | V | | | Current Consumption | | 69 | | mA | Total device current. | | Power Down Current | | <10 | | μΑ | | | VPD HIGH Voltage | V _{CC} -0.3 | | | V | | | VPD LOW Voltage | | | 0.3 | V | | | PLL Settings | | | | | | | Application | Japan | Japan | US/Korea | | | | LO Frequency, MHz | 333.7 | 333.7 | 260.76 | | IF Frequency=LO Frequency/2 | | Crystal, MHz | 19.2 | 19.8 | 19.68 | | | | Reference Divider | 192 | 198 | 252 | | | | Phase Detector Frequency, kHz | 100 | 100 | 78.09524 | | | | Prescaler | 32/33 | 32/33 | 32/33 | | | | Swallow Counter (A) | 9 | 9 | 11 | | | | Fixed Divider (N) | 104 | 104 | 104 | | | | Net N in VCO Path | 3337 | 3337 | 3339 | | | | SET1 | VCC | GND | GND | | | | SET2 | GND | VCC | GND | | | 5-74 Rev B3 001114 | Pin | Function | Description | Interface Schematic | |-----|----------|---|---| | 1 | NC | Not connected. | | | 2 | NC | Not connected. | | | 3 | RF OUT | RF output pin. An external shunt inductor to V_{CC} plus a series blocking/matching capacitor are required for 50Ω output. | V _{CC4}
\$300 Ω
O RF OUT | | 4 | VCC4 | Supply for the mixer stage only. The supply for the mixer is separated to maximize IF to RF isolations and reduce the carrier leakage. A 10nF external bypass capacitor is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane. | | | 5 | LO2+ | One half of the balanced mixer LO2 input. In single-ended applications, the other half of the input, LO2- is AC grounded. This is a 50Ω impedance port. This pin is NOT internally DC-blocked. An external blocking capacitor (100 pF recommended) must be provided if the pin is connected to a device with DC present. | BIAS BIAS 50 Ω 50 Ω LO2- | | 6 | LO2- | One half of the balance mixer LO2 input. In single ended applications, this pin is AC grounded with a 100 pF capacitor. | See pin 19. | | 7 | GND2 | Ground connection for the mixer stage. For best performance, keep traces physically short and connect immediately to ground plane. | | | 8 | GND2 | Same as pin 16. | | | 9 | MIX_DEC | Current Mirror decoupling pin. A 1000pF external capacitor is required to bypass this pin. The ground side of the bypass capacitors should connect immediately to ground plane. | | | 10 | MIX IN+ | Same as pin 11, except complementary input. | See pin 11. | | 11 | MIX IN- | One half of the 200Ω balanced impedance input to the mixer stage. This pin is NOT internally DC-blocked. An external blocking capacitor (1000pF recommended) must be provided if the pin is connected to a device with DC present. If no IF filter is needed this pin may be connected to MOD OUT+ through a DC blocking capacitor. An appropriate matching network may be needed if an IF filter is used. | BIAS \$100 Ω IX IN- BIAS \$100 Ω MIX IN+ | | 12 | NC | Not connected. | | | 13 | NC | Not connected. | | | 14 | MOD OUT- | One half of the balanced AGC output port. The impedance of this port is 200Ω balanced. If no filtering is required, this pin can be connected to the MIX IN- pin through a DC blocking capacitor. This pin requires an inductor to V_{CC} to achieve full dynamic range. In order to maximize gain, this inductor should be a high-Q type and should be parallel resonated out with a capacitor (see application schematic). This pin is NOT DC-blocked. A blocking capacitor of 2200 pF is needed when this pin is connected to a DC path. An appropriate matching network may be needed if an IF filter is used. | V _{CC3} V _{CC3}
\$100 Ω \$100 Ω
MOD OUT- MOD OUT- | | 15 | MOD OUT+ | Same as pin 14, except complementary output. | See pin 14. | | 16 | GND1 | Ground connection for all baseband circuits including bandgap, AGC, flip-flop, modulator and FM amp. For best performance, keep traces physically short and connect immediately to ground plane. | | | Pin | Function | Description | Interface Schematic | |-----|----------|--|---------------------| | 17 | AGC_DEC | AGC decoupling pin. An external bypass capacitor of 1nF capacitor is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane. | | | 18 | VGC | Analog gain control for AGC amplifiers. Valid control voltage ranges are from 0.3V_{DC} to $2.4\text{V}_{DC}.$ The gain range for the AGC is 95dB. These voltages are valid ONLY for a $39k\Omega$ source impedance. A DC voltage less than or equal to the maximum allowable V_{CC} may be applied to this pin when no voltage is applied to the V_{CC} pins. | BIAS | | 19 | VCC2 | Supply for the modulator stage only. A 10nF external bypass capacitor is required and an additional $0.1\mu F$ will be required if no other low frequency bypass capacitors are nearby. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane. | | | 20 | GND1 | Same as pin 16. | | | 21 | Q SIG | Baseband input to the Q mixer. This pin is DC coupled. The DC level of 1.3V must be supplied to this pin to bias the transistor. Input impedance of this pin is $50 \text{k}\Omega$ minimum. A DC voltage less than or equal to the maximum allowable V_{CC} may be applied to this pin when no voltage is applied to the V_{CC} pins. | Q SIG Q REF | | 22 | Q REF | Reference voltage for the Q mixer. This voltage should be the same as the DC voltage supplied to the Q SIG pin. For maximum carrier suppression, DC voltage on this pin relative to the Q SIG DC voltage may be adjusted. Input impedance of this pin is $50\mathrm{k}\Omega$ minimum. A DC voltage less than or equal to the maximum allowable V_{CC} may be applied to this pin when no voltage is applied to the V_{CC} pins. | See pin 2. | | 23 | I REF | Reference voltage for the I mixer. This voltage should be the same as the DC voltage supplied to the I SIG pin. For maximum carrier suppression, DC voltage on this pin relative to the I SIG DC voltage may be adjusted. Input impedance of this pin is $50\mathrm{k}\Omega$ minimum. A DC voltage less than or equal to the maximum allowable V_{CC} may be applied to this pin when no voltage is applied to the V_{CC} pins. | See pin 5. | | 24 | I SIG | Baseband input to the I mixer. This pin is DC coupled. The DC level of 1.3V must be supplied to this pin to bias the transistor. Input impedance of this pin is $50\mathrm{k}\Omega$ minimum. A DC voltage less than or equal to the maximum allowable V_{CC} may be applied to this pin when no voltage is applied to the V_{CC} pins. | I SIG | | 25 | NC | Not connected. | | | 26 | VCO_ISET | An external resistor of $47\text{k}\Omega$ is used to set the VCO current for minimum phase noise. | | | 27 | VCC1 | Supply Voltage for the LO1 flip-flop and limiting amp only. This supply is isolated to minimize the carrier leakage. A 1 nF external bypass capacitor is required, and an additional 0.1 μ F will be required if no other low frequency bypass capacitors are nearby. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane. | | | 28 | L01- | External LO input to modulator. Controlled by VCO_EN signal. Logic low is internal VCO, while logic high is external VCO. | See pin 8. | 5-76 Rev B3 001114 | Pin | Function | Description | Interface Schematic | |-----|----------|--|-------------------------| | 29 | LO1+ | External LO input to modulator. Controlled by VCO_EN signal. Logic low is internal VCO, while logic high is external VCO. | LO1+, FM+ | | 30 | VCO- | See VCO+ description. | | | 31 | VCO+ | This port is used to supply DC voltage to the VCO as well as to tune the center frequency of the VCO. Equal value inductors should be connected to this pin and pin 30 although a small imbalance can be used to tune in the proper frequency range. | | | 32 | DO | Output of the charge pump, and input to the VCO control. An RC network from this pin to ground is used to establish the PLL bandwidth. | | | 33 | LD | Lock detector output for synthesizer. Requires external transistor to provide hysteresis and inversion of signal. See Application circuit. | | | 34 | PLLGND | Ground for synthesizer. For best performance, keep traces physically short and connect immediately to ground plane. | | | 35 | PLLVCC | Supply for the PLLVCC only. A 10nF external bypass capacitor is required and an additional $0.1\mu F$ will be required if no other low frequency bypass capacitors are nearby. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane. | | | 36 | SET2 | PLL Setting (Divider) pin. See the PLL settings table. | | | 37 | SET1 | See SET2. | | | 38 | OSCREF | TCXO reference input for synthesizer. | | | 39 | VREFPLL | Bypass pin for the synthesizer reference voltage. | | | 40 | PLLISET | Current setting pin for synthesizer charge pump. For normal operation, a 390Ω resistor to ground should be used to set the current. | | | 41 | PLLON | Synthesizer Enable pin. | See pin 45. | | 42 | VCO_EN | VCO Enable pin. Switches between internal and external VCO. | See pin 45. | | 43 | MIX_EN | Power down control for mixer only. When connected to logic "high" (>V $_{CC}$ -0.3) the mixer circuits are operating; when connected to ground (\leq 0.3V), the mixer is turned off but all other circuits are operating. A DC voltage less than or equal to the maximum allowable V $_{CC}$ may be applied to this pin when no voltage is applied to the V $_{CC}$ pins. | MIX EN Ο 1 kΩ | | 44 | TX_EN | Shuts down the entire TX path. VCO is still active when TX disabled. Logic high (>V _{CC} -0.3) for TX Enable. | | | 45 | CE | Power down control for overall circuit. When logic "high" (\ge V _{CC} -0.3V), all circuits are operating; when logic "low" (\le 0.3V), all circuits are turned off. The input impedance of this pin is >10k Ω . A DC voltage less than or equal to the maximum allowable Vcc may be applied to this pin when no voltage is applied to the V _{CC} pins. | CE Ο 10 kΩ | | 46 | MODE | Selects between CDMA and FM mode. This is a digitally controlled input. A logic "high" (\geq V $_{CC}$ -0.3 V_{DC}) selects CDMA mode. A logic "low" ($<$ 0.3 V_{DC}) selects FM mode. In FM mode, this switch enables the FM amplifier and turns off the I&Q modulator. The impedance on this pin is 30k Ω . A DC voltage less than or equal to the maximum allowable V_{CC} may be applied to this pin when no voltage is applied to the V_{CC} pins. | BIAS 60 kΩ 60 kΩ MODE 0 | Preliminary **RF2668** | Pin | Function | Description | Interface Schematic | |-----|----------|---|---------------------| | 47 | VCC3 | Supply voltage for the AGC and the Bandgap circuitry. A 1 nF external bypass capacitor is required and an additional $0.1\mu F$ will be required if no other low frequency bypass capacitors are nearby. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane. | | | 48 | BG OUT | Bandgap voltage reference. This voltage, constant over temperature and supply variation, is used to bias internal circuits. A 1nF external bypass capacitor is required. | | 5-78 Rev B3 001114 #### Pin-Out ## Application Schematic Single- or Dual-Mode Operation 5-80 Rev B3 001114 Preliminary RF2668 # Application Schematic Tri-Mode/Dual-Band Operation # Evaluation Board Schematic RF_{OUT}=830MHz (Download Bill of Materials from www.rfmd.com.) 5-82 Preliminary RF2668 ### Evaluation Board Schematic Dual Output Band # Evaluation Board Layout 2.500" X 2.250" Board Thickness 0.031", Board Material FR-4 5-84 Rev B3 001114 #### 5 # MODULATORS AND UPCONVERTERS # Evaluation Board Layout - Dual Band Output 5 MODULATORS AND UPCONVERTERS 5-86 Rev B3 001114