

Data Sheet

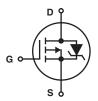
January 2002

2.1A, 30V, 0.150 Ohm, P-Channel Logic Level, Power MOSFET

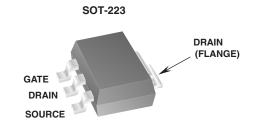
This product is a P-Channel power MOSFET manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. It was designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. This transistor can be operated directly from integrated circuits.

Formerly developmental type TA49222.

Ordering Information


PART NUMBER	PACKAGE	BRAND
RFT2P03L	SOT-223	2P03L

NOTE: RFT2P03L is available only in tape and reel. Use the entire part number and add the suffix T.


Features

- 2.1A, 30V
- $r_{DS(ON)} = 0.150\Omega$
- Temperature Compensating PSPICE[®] Model
- Thermal Impedance SPICE Model
- · Peak Current vs Pulse Width Curve
- UIS Rating Curve
- · Related Literature
 - TB334, "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

Packaging

RFT2P03L

Absolute Maximum Ratings $T_A = 25^{\circ}C$, Unless Otherwise Specified

		UNITS
Drain to Source Voltage (Note 1)	-30	V
Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1)	-30	V
Gate to Source VoltageV _{GS}	±20V	V
Drain Current		
Continuous (Note 2) (Figure 2)	2.1	Α
Pulsed Drain CurrentI _{DM}	Figure 5	
Pulsed Avalanche Rating E _{AS}	Figures 6, 14, 15	
Power Dissipation (Note 2)	1.1	W
Derate Above 25 ^o C	0.009	W/oC
Operating and Storage Temperature	-55 to 150	°C
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10sT _L	300	°C
Package Body for 10s, See Techbrief 334	260	oC

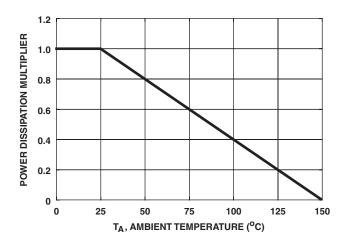
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications $T_A = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0V (Figure 11)		-30	-	-	V
Gate to Source Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250\mu A$ (Figure 10)		-1	-	-3	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = -30V, V _{GS} = 0V		-	-	-1	μΑ
		$V_{DS} = -30V, V_{GS} = 0V, T_A = 150^{\circ}C$		-	-	-50	μΑ
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±20V		-	-	±100	nA
Drain to Source On Resistance	r _{DS(ON)}	$I_D = 2.1A, V_{GS} = -1$	0V (Figure 9)	-	0.120	0.150	Ω
		$I_D = 2.1A, V_{GS} = -4$.5V (Figure 9)	-	0.300	0.360	Ω
Turn-On Time	ton	$V_{DD} = -15V$, $I_{D} \approx 2.1A$, $R_{L} = 7.1\Omega$, $V_{GS} = -10V$, $R_{GS} = 21\Omega$		-	-	50	ns
Turn-On Delay Time	t _d (ON)			-	13	-	ns
Rise Time	t _r			-	18	-	ns
Turn-Off Delay Time	t _{d(OFF)}			-	43	-	ns
Fall Time	t _f			-	24	-	ns
Turn-Off Time	tOFF			-	-	100	ns
Total Gate Charge	Q _{g(TOT)}	V _{GS} = 0V to -20V	$V_{DD} = -15V, I_{D} \cong 2.1A,$	-	27	33	nC
Gate Charge at -10V	Q _{g(-10)}	$V_{GS} = 0V \text{ to } -10V$ $V_{GS} = 0V \text{ to } -2V$ $R_{L} = 7.1\Omega$ $I_{g(REF)} = -1.0\text{mA}$ (Figure 13)		-	14	17	nC
Threshold Gate Charge	Q _{g(TH)}			-	1.3	1.6	nC
Input Capacitance	C _{ISS}	f = 1MHz (Figure 12)		-	620	-	pF
Output Capacitance	C _{OSS}			-	240	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	30	-	pF
Thermal Resistance Junction to Ambient	$R_{\theta JA}$			-	-	110	°C/W
				-	-	128	°C/W
P		Pad Area = 0.026 ir	n ² (See Tech Brief 377)	-	-	147	°C/W


Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage	V _{SD}	I _{SD} = -2.1A	-	-	-1.25	V
Reverse Recovery Time t _{rr}		$I_{SD} = -2.1A$, $dI_{SD}/dt = 100A/\mu s$		-	49	ns
Reverse Recovered Charge	Q _{RR}	$I_{SD} = -2.1A$, $dI_{SD}/dt = 100A/\mu s$	-	-	45	nC

NOTE:

2. 110°C/W measured using FR-4 board with 0.171 in² footprint for 1000 seconds.

Typical Performance Curves Unless Otherwise Specified

-2.5

R₀JA = 110°C/W

R₀JA = 110°C/W

-2.0

R₀JA = 110°C/W

1.5

T_A, AMBIENT TEMPERATURE (°C)

FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE



FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

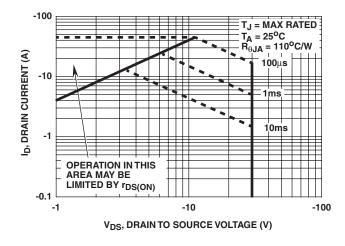


FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

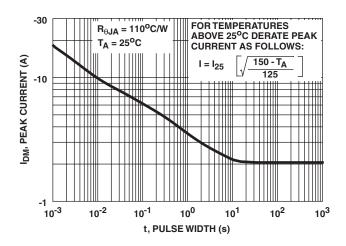
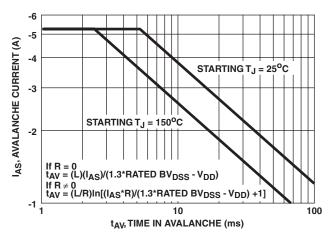



FIGURE 5. PEAK CURRENT CAPABILITY

Typical Performance Curves Unless Otherwise Specified (Continued)

NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.

FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY

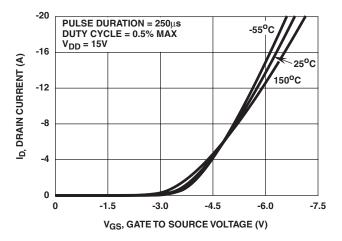


FIGURE 8. TRANSFER CHARACTERISTICS

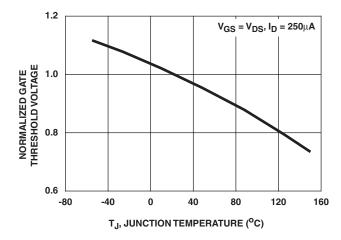


FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

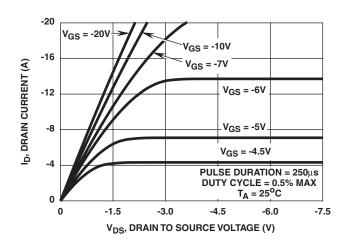


FIGURE 7. SATURATION CHARACTERISTICS

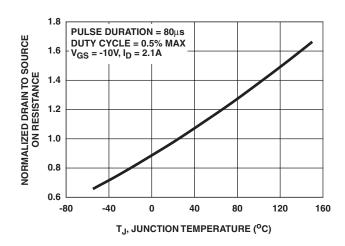


FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

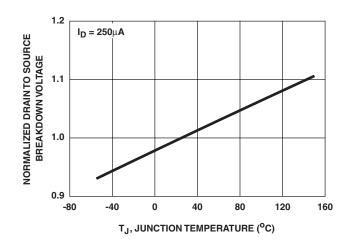


FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

Typical Performance Curves Unless Otherwise Specified (Continued)

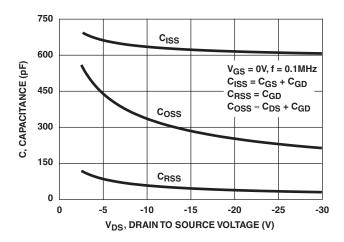
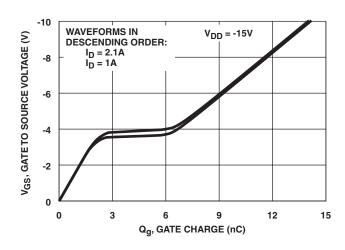



FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT

GATE CURRENT

Test Circuits and Waveforms

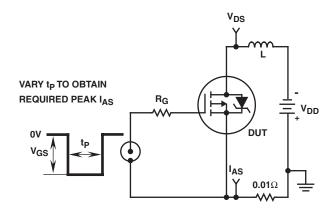


FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT

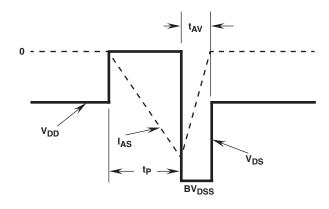


FIGURE 15. UNCLAMPED ENERGY WAVEFORMS

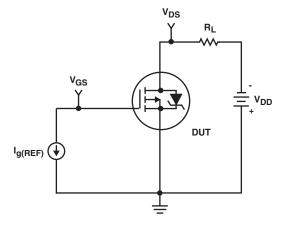


FIGURE 16. GATE CHARGE TEST CIRCUIT

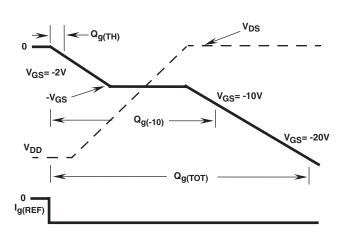


FIGURE 17. GATE CHARGE WAVEFORM

Test Circuits and Waveforms (Continued)

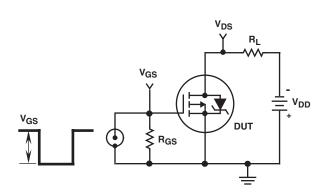


FIGURE 18. SWITCHING TIME TEST CIRCUIT

Thermal Resistance vs. Mounting Pad Area

The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (O C), and thermal impedance $R_{\theta JA}$ (O C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}} \tag{EQ. 1}$$

In using surface mount devices such as the SOT-223 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of the $P_{\mbox{\footnotesize{DM}}}$ is complex and influenced by many factors:

- Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the hoard
- 2. The number of copper layers and the thickness of the board
- 3. The use of external heat sinks
- 4. The use of thermal vias
- 5. Air flow and board orientation
- For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 20 defines the $R_{\theta JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides

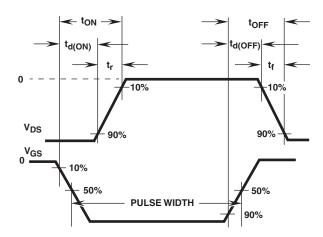


FIGURE 19. RESISTIVE SWITCHING WAVEFORMS

the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

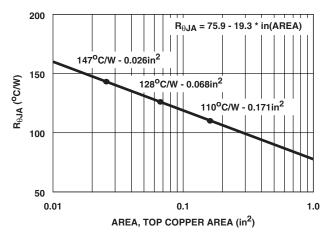


FIGURE 20. THERMAL RESISTANCE VS MOUNTING PAD AREA

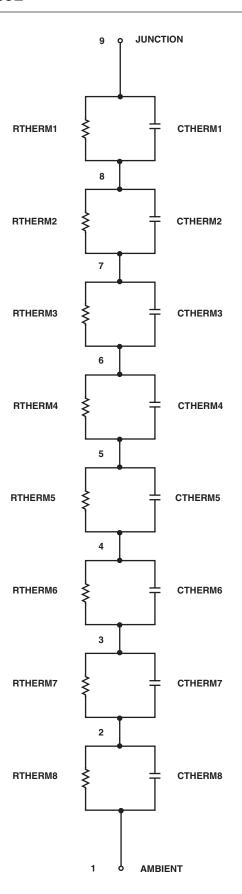
Displayed on the curve are $R_{\theta JA}$ values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, P_{DM} . Thermal resistances corresponding to other component side copper areas can be obtained from Figure 20 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads.

$$R_{\theta,IA} = 75.9 - 19.3 \times in(Area)$$
 (EQ. 2)

PSPICE Electrical Model

.SUBCKT RFT2P03L 2 1 3; REV July 1998 CA 12 8 6.5e-10 CB 15 14 6.4e-10 CIN 6 8 5.77e-10 ESG LDRAIN DRAIN -0 2 DBODY 5 7 DBODYMOD **RLDRAIN** DBREAK 7 11 DBREAKMOD RSLC1 DPLCAP 10 6 DPLCAPMOD 51 RSLC2 **ESLC** 17 18 EBREAK 5 11 17 18 -41.2 **EBREAK** EDS 14 8 5 8 1 50 EGS 13 8 6 8 1 **DPLCAP** RDRAIN DBODY FSG 5 10 8 6 1 EVTHRES 6 21 19 8 1 16 11 **EVTHRES** EVTEMP 6 20 18 22 1 19 21 **EVTEMP MWEAK** LGATE IT 8 17 1 GATE **RGATE ⊢**ММЕО 20 LDRAIN 2 5 1e-9 DBREAK 7 LGATE 1 9 1.27e-9 MSTRO RLGATE LSOURCE 3 7 4.2e-10 **LSOURCE** CIN RSOURCE SOURCE 8 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RLSOURCE S2A S1A d RBREAK 17 18 RBREAKMOD 1 **RBREAK** 14 13 RDRAIN 50 16 RDRAINMOD 24e-3 18 RGATE 9 20 5.2 S₂B RLDRAIN 2 5 10 S₁B RVTEMP 13 **RLGATE 1 9 12.7** CB RLSOURCE 3 7 4.2 CA (£ IT 14 RSLC1 5 51 RSLCMOD 1e-6 **VBAT** RSLC2 5 50 1e3 **EGS EDS** RSOURCE 8 7 RSOURCEMOD 68e-3 **RVTHRES 22 8 RVTHRESMOD 1** 8 RVTEMP 18 19 RVTEMPMOD 1 **RVTHRES** S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*45),2.5))} .MODEL DBODYMOD D (IS = 2e-13 RS = 3.5e-2 IKF = 0.7 XTI = 8.2 TRS1 = 6e-4 TRS2 = 5e-7 CJO = 7.3e-10 TT = 3.51e-8 M = 0.4 .MODEL DBREAKMOD D (RS = 2e-1 TRS1 = 1e-4 TRS2 = 1e-5) .MODEL DPLCAPMOD D (CJO = 2.65e-10 IS = 1e-30 N = 10 M = 0.63) .MODEL MMEDMOD PMOS (VTO = -2.6 KP = 1.2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 5.2) .MODEL MSTROMOD PMOS (VTO = -3.27 KP = 6 IS = 1e-30 N = 10 TOX = 1 L = 1 u W = 1 u) .MODEL MWEAKMOD PMOS (VTO = -2.11 KP = 0.07 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 52 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 9.2e-4 TC2 = -1e-7) MODEL RDRAINMOD RES (TC1 = 1.8e-2 TC2 = 2.1e-5) .MODEL RSLCMOD RES (TC1 = 3.5e-3 TC2 = 1.3e-6) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = 8.8e-4 TC2 = 6.1e-6) .MODEL RVTEMPMOD RES (TC1 = -2e-3 TC2 = 1e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 5.7 VOFF= 2.7) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.7 VOFF= 5.7) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.1 VOFF= -2.4) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.4 VOFF= -0.1) .ENDS

NOTE: For further discussion of the PSPICE model, consult **A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options**; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.


SPICE Thermal Model

REV July 98

RFT2P03L

CTHERM1 9 8 1.9e-5 CTHERM2 8 7 3.0e-4 CTHERM3 7 6 1.2e-3 CTHERM4 6 5 3.5e-3 CTHERM5 5 4 2.0e-2 CTHERM6 4 3 6.5e-2 CTHERM7 3 2 2.0e-1 CTHERM8 2 1 1

RTHERM1 9 8 3.5e-2 RTHERM2 8 7 8.5e-2 RTHERM3 7 6 3.5e-1 RTHERM4 6 5 1.85 RTHERM5 5 4 2.75 RTHERM6 4 3 15 RTHERM7 3 2 30 RTHERM8 2 1 50

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SMART START™ VCX^{TM} FAST ® OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 $Power Trench^{\, @}$ DOME™ SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM}

EnSigna™ MicroFET™ QT Optoelectronics™ TruTranslation™
FACT™ MicroPak™ Quiet Series™ UHC™
FACT Quiet Series™ MICROWIRE™ SILENT SWITCHER® UltraFET®

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition				
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.				
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.				
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.				

Rev. H4