+5V Precision Voltage **Reference/Temperature Transducer** **REF-02** #### **FEATURES** | • 5 Volt Output | ±0.3% Max | |--|------------------------| | Temperature Voltage Output | | | Adjustment Range | | | • Excellent Temperature Stability 8.5p | pm/° C Max | | • Low Noise 1 | 5μV _{D-D} Max | | Low Supply Current | | | Wide Input Voltage Range | . 7V to 40V | | High Load-Driving Capability | 20mA | | No External Components | | | - 61 1 61 11 61 6 | | - Short-Circuit Proof - MIL-STD-883 Screening Available - Available in Die Form #### ORDERING INFORMATION 1 | T _A = 25°C | | PAC | CKAGE | | OPERATING | |-----------------------------|----------|-----------------|------------------|-------------------|----------------------| | V _{os} MAX
(mV) | TO-99 | CERDIP
8-PIN | PLASTIC
8-PIN | LCC
20-CONTACT | TEMPERATURE
RANGE | | ±15 | REF02AJ* | REF02AZ* | _ | _ | MIL | | ±15 | REF02EJ | REF02EZ | _ | - | COM | | ±25 | REF02J* | REF02Z* | _ | REF02RC/883 | MIL | | ±25 | REF02HJ | REF02HZ | REF02HP | _ | COM | | ±50 | REF02CJ | REF02CZ | - | _ | COM | | ±50 | _ | _ | REF02CP | - | XIND | | ±50 | | - | REF02CS†† | _ | XIND | | ±100 | REF02DJ | REF02DZ | REF02DP | _ | СОМ | - For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet. - Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages. - For availability and burn-in information on SO and PLCC packages, contact your local sales office. #### **GENERAL DESCRIPTION** The REF-02 precision voltage reference provides a stable +5V output which can be adjusted over a ±6% range with minimal effect on temperature stability. Single-supply operation over an input voltage range of 7V to 40V, low current drain of 1mA, and excellent temperature stability are achieved with an improved bandgap design. Low cost, low noise, and low power make the REF-02 an excellent choice whenever a stable voltage reference is required. Applications include D/A and A/D converters, portable instrumentation, and digital voltmeters. The versatility of the REF-02 is enhanced by its use as a monolithic temperature transducer. For +10V references, see the REF-01 and REF-10 data sheets. #### PIN CONNECTIONS TO-99 (J-Suffix) **8-PIN HERMETIC DIP** (Z-Suffix) **EPOXY MINI-DIP** (P-Suffix) 8-PIN SO (S-Suffix) ## SIMPLIFIED SCHEMATIC #### REV. B Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Twx: 710/394-6577 Fax: 617/326-8703 Tel: 617/329-4700 Telex: 924491 Cable: ANALOG NORWOODMASS #### **ABSOLUTE MAXIMUM RATINGS (Note 1)** | 5 1 <i>)</i> | |----------------| | | | 40V | | 30V | | | | Indefinite | | | | 65°C to +150°C | | 65°C to +125°C | | | | 55°C to +125°C | | 0°C to +70°C | | 0°C to +70°C | | 40°C to +85°C | | 300°C | | | | Junction Temperature (T _j)–65°C to +150 | | | | | | | |---|--------------------------|-----------------|-------|--|--|--| | PACKAGE TYPE | Θ _{JA} (NOTE 2) | Θ _{jC} | UNITS | | | | | TO-99 (J) | 170 | 24 | °C/W | | | | | 8-Pin Hermetic DIP (Z) | 162 | 26 | °C/W | | | | | 8-Pin Plastic DIP (P) | 110 | 50 | °C/W | | | | | 20-Contact LCC (RC, TC) | 120 | 40 | °C/W | | | | | 8-Pin SO (S) | 160 | 44 | °C/W | | | | | 20-Contact PLCC (PC) | 80 | 39 | °C/W | | | | #### NOTES: - Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted. - 2. Θ_{jA} is specified for worst case mounting conditions, i.e., Θ_{jA} is specified for device in socket for TO, CerDIP, P-DIP, and LCC packages; Θ_{jA} is specified for device soldered to printed circuit board for SO and PLCC packages. #### **ELECTRICAL CHARACTERISTICS** at $V_{IN} = +15V$, $T_A = +25$ °C, unless otherwise noted. | | | | F | EF-02A | /E | ı | REF-02/ | Н | | |----------------------------|-------------------|--|-------------|--------|-------|-------|---------|-------|-------------------| | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | Output Voltage | v _o | l_ = 0 | 4.985 | 5.000 | 5.015 | 4.975 | 5.000 | 5.025 | ٧ | | Output Adjustment Range | ΔV_{trim} | $R_p = 10k\Omega$ | ±3 | ±6 | | ±3 | ±6 | _ | % | | Output Voltage Noise | e _{np-p} | 0.1Hz to 10Hz (Note 7) | | 10 | 15 | _ | 10 | 15 | μV _{p-p} | | Line Regulation (Note 2) | | V _{IN} = 8V to 33V | _ | 0.006 | 0.010 | - | 0.006 | 0.010 | %/V | | Load Regulation (Note 2) | | I _L = 0 to 10mA | _ | 0.005 | 0.010 | _ | 0.006 | 0.010 | %/mA | | Turn-on Settling Time | ton | To ±0.1% of final value | , ı – | 5 | _ | _ | 5 | _ | μs | | Quiescent Supply Current | I _{SY} | No Load | _ | 1.0 | 1.4 | _ | 1.0 | 1.4 | mA | | Load Current | اړ | and the second s | 10 | 21 | _ | 10 | 21 | | mA | | Sink Current | I _S | (Note 8) | -0.3 | -0.5 | _ | -0.3 | -0.5 | _ | mA | | Short-Circuit Current | l _{sc} | V _O = 0 | _ | 30 | _ | _ | 30 | _ | mA | | Temperature Voltage Output | V _T | (Note 3) | _ | 630 | _ | _ | 630 | _ | mV | # **ELECTRICAL CHARACTERISTICS** at $V_{IN} = \pm 15V$, -55° C \leq T_A $\leq \pm 125^{\circ}$ C for REF-02A and REF-02, 0° C \leq T_A $\leq \pm 70^{\circ}$ C for REF-02E and REF-02H, $I_{L} = 0$ mA, unless otherwise noted. | | | | REF-0 | | | /E | ı | REF-02/ | Н | | |---|------------------|---|-------|-------|-------|-------------|-------|---------|--------|--| | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | | Ouput Voltage Change with | ΔV_{OT} | $0^{\circ} C \le T_{A} \le +70^{\circ} C$ | _ | 0.02 | 0.06 | | 0.07 | 0.17 | % | | | Temperature (Notes 4, 5) | ΔV _{OT} | -55° C \leq T _A \leq + 125° C | | 0.06 | 0.15 | | 0.18 | 0.45 | % | | | Output Voltage
Temperature Coefficient | TCVo | (Note 6) | _ | 3 | 8.5 | | 10 | 25 | ppm/°C | | | Change in V _O Temperature
Coefficient with Output
Adjustment | | $R_p = 10k\Omega$ | _ | 0.7 | _ | _ | 0.7 | _ | ppm/% | | | Line Regulation | | 0° C ≤ T _A ≤ +70° C | _ | 0.007 | 0.012 | _ | 0.007 | 0.012 | 0.0. | | | (V _{IN} = 8 to 33V) (Note 2) | | -55° C ≤ T _A ≤ +125° C | | 0.009 | 0.015 | | 0.009 | 0.015 | %/V | | | Load Regulation | | 0° C ≤ T _A ≤ +70° C | _ | 0.006 | 0.010 | _ | 0.007 | 0.012 | 0// | | | (I _L = 0 to 8mA) (Note 2) | | -55° C \leq T _A \leq $+125^{\circ}$ C | _ | 0.007 | 0.012 | _ | 0.009 | 0.015 | %/mA | | | Temperature Voltage Output
Temperature Coefficient | TCV _T | (Note 3) | | 2.1 | | _ | 2.1 | | mV/°C | | #### NOTES: - Guaranteed by design. - 2. Line and Load Regulation specifications include the effect of self heating. - 3. Limit current in or out of pin 3 to 50nA and capacitance on pin 3 to 30pF. - ΔV_{OT} is defined as the absolute difference between the maximum output voltage and the minimum output voltage over the specified temperature range expressed as a percentage of 5V. $$\Delta V_{OT} = \left| \frac{V_{MAX} - V_{MIN}}{5V} \right| \times 100$$ - 5. ΔV_{OT} specification applies trimmed to $\pm 5.000 V$ or untrimmed. - 6. TCV_O is defined as ΔV_{OT} divided by the temperature range, i.e., $$TCV_O = \frac{\Delta V_{OT}}{70^{\circ}C}$$ - 7. Sample Tested. - 8. During sink current test the driver meets the output voltage specified. #### **ELECTRICAL CHARACTERISTICS** at $V_{IN} = +15V$, $T_A = 25$ °C, unless otherwise noted. | | | | | REF-020 | 2 | | REF-02 | D | | |----------------------------|-------------------|--|-------|---------|--------------|-------|------------|-------------|-------------------| | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | Output Voltage | V _O | I _L = 0mA | 4.950 | 5.000 | 5.050 | 4.900 | 5.000 | 5.100 | V | | Output Adjustment Range | ΔV_{trim} | $R_p = 10k\Omega$ | ±2.7 | ±6.0 | _ | ±2.0 | ±6.0 | _ | % | | Output Voltage Noise | e _{np-p} | 0.1Hz to 10Hz (Note 7) | _ | 12 | 18 | _ | 12 | | μV _{p-p} | | Line Regulation (Note 2) | | V _{IN} = 8V to 30V | _ | 0.009 | 0.015 | _ | 0.010 | 0.04 | %/V | | Load Regulation (Note 2) | | I _L = 0 to 8mA
I _L = 0 to 4mA | _ | 0.006 | 0.015 | _ | —
0.015 | —
0.04 | %/mA | | Turn-on Settling Time | ton | To ±0.1% of final value | _ | 5 | _ | _ | 5 | _ | μs | | Quiescent Supply Current | I _{SY} | No Load | _ | 1.0 | 1.6 | _ | 1.0 | 2.0 | mA | | Load Current | ١ _L | | 8 | 21 | | 8 | 21 | _ | mA | | Sink Current | Is | (Note 8) | -0.3 | -0.5 | - | -0.3 | -0.5 | _ | mA | | Short-Circuit Current | I _{sc} | V _O – 0 | | 30 | _ | _ | 30 | _ | mA | | Temperature Voltage Output | V _T | (Note 3) | _ | 630 | _ | _ | 630 | _ | mV | # **ELECTRICAL CHARACTERISTICS** at V_{IN} = +15V; I_L = 0mA, 0°C \leq $T_A \leq$ +70°C for REF-02CJ, CZ, DJ, DZ, DP; -40°C \leq $T_A \leq$ +85°C for REF-02CP, CS; unless otherwise noted. | | | | ı | REF-020 | C | İ | REF-021 | D | | |---|------------------|-----------------------------|----------------|---------|-------|------------------|---------|----------|--------| | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | Ouput Voltage Change with
Temperature | ΔV _{OT} | (Notes 4 and 5) | - . | 0.14 | 0.45 | ; - . | 0.49 | 1.7 | % | | Output Voltage
Temperature Coefficient | TCVo | (Note 6) | · . | 20 | 65 | ·
— | 70 | 250 | ppm/°C | | Change in V _O Temperature
Coefficient With Output
Adjustment | | $R_p = 10k\Omega$ | <u> </u> | 0.7 | _ | · . | 0.7 | _ | ppm/% | | Line Regulation (Note 2) | | V _{IN} = 8V to 30V | - | 0.011 | 0.018 | | 0.012 | 0.05 | %/V | | Load Regulation (Note 2) | | I _L = 0 to 5mA | - . | 0.008 | 0.018 | | 0.016 | 0.05 | %/mA | | Temperature Voltage Output Temperature Coefficient | TCV _T | (Note 3) | - | 2.1 | _ | | 2.1 | | mV/°C | #### NOTES: 1. Guaranteed by design. - 2. Line and Load Regulation specifications include the effect of self heating. - 3. Limit current in or out of pin 3 to 50nA and capacitance on pin 3 to 30pF. - 4. ΔV_{OT} is defined as the absolute difference between the maximum output voltage and the minimum output voltage over the specified temperature range expressed as a percentage of 5V. $$\Delta V_{OT} = \left| \frac{V_{MAX} - V_{MIN}}{5V} \right| \times 100$$ - 5. ΔV_{OT} specification applies trimmed to +5.000V or untrimmed. - 6. TCV_0 is defined as ΔV_{OT} divided by the temperature range, i.e., $$TCV_{O} = \frac{\Delta V_{OT}}{70^{\circ}C}$$ - 7. Sample Tested. - 8. During sink current test the device meets the output voltage specified. #### DICE CHARACTERISTICS (125° C TESTED DICE AVAILABLE) DIE SIZE 0.074 \times 0.048 inch, 3552 sq. mils (1.88 \times 1.22 mm, 2.29 sq. mm) - 2. INPUT VOLTAGE (VIN) - 3. TEMPERATURE TRANSDUCER OUTPUT VOLTAGE (TEMP) - 4. GROUND - 5. TRIM - 6. OUTPUT VOLTAGE (V_{OUT}) **WAFER TEST LIMITS** at V_{IN} = +15V, T_A = 25° C for REF-02N and REF-02G devices; T_A = 125° C for REF-02NT and REF-02GT devices, unless otherwise noted. (Note 3) | PARAMETER | SYMBOL | CONDITIONS | REF-02NT | REF-02N
LIMIT | REF-02GT | REF-02G
LIMIT | UNITS | |-------------------------|-------------------|-----------------------------|----------------|------------------|----------------|------------------|----------------| | Output Voltage | v _o | I _L = 0 | 4.975
5.025 | 4.985
5.015 | 4.950
5.050 | 4.975
5.025 | V MIN
V MAX | | Output Adjustment Range | V _{trim} | $R_P = 10k\Omega$ | | ±3 | | ±3 | % MIN | | Line Regulation | | V _{IN} = 8V to 33V | 0.015 | 0.01 | 0.015 | 0.01 | %/V MAX | #### NOTE: Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing. #### **TYPICAL ELECTRICAL CHARACTERISTICS** at $V_{\text{IN}} = +15V$, $T_{\text{A}} = +25^{\circ}\,\text{C}$, unless otherwise noted. | SYMBOL | CONDITIONS | REF-02NT
TYPICAL | REF-02N
TYPICAL | REF-02GT
TYPICAL | REF-02G
TYPICAL | UNITS | | |-------------------|--|---|---|--|--|---|--| | V _T | (Notes 1, 2) | 630 | 630 | 630 | 630 | mV | | | TCV _T | (Notes 1, 2) | 2.1 | 2.1 | 2.1 | 2.1 | mV/°C | | | TCVo | | 10 | 10 | 10 | 10 | ppm/°C | | | | $I_L = 0$ to 10mA
$I_L = 0$ to 8mA, NT, GT @ +125° C | 0.007 | 0.005 | 0.009 | 0.006 | %/mA | | | e _{np-p} | 0.1Hz to 10Hz | 10 | 10 | 10 | 10 | μV _{p-p} | | | ^t on | To ±0.1% of final value, NT, GT @ +125° C | 7.5 | 5.0 | 7.5 | 5.0 | με | | | Isy | No Load, NT, GT @ +125°C | 1.4 | 1.0 | 1.4 | 1.0 | mA | | | I _L | | 21 | 21 | 21 | 21 | mA | | | Is | | -0.5 | -0.5 | -0.5 | -0.5 | mA | | | Isc | V _O = 0 | 30 | 30 | 30 | 30 | mA | | | | V _T TCV _T TCV _O e _{np-p} t _{ON} l _{SY} l _L l _S | V _T (Notes 1, 2) TCV _T (Notes 1, 2) TCV _O I _L = 0 to 10mA I _L = 0 to 8mA, NT, GT @ +125° C e _{np-p} 0.1Hz to 10Hz To ±0.1% of final value, NT, GT @ +125° C I _{SY} No Load, NT, GT @ +125° C I _L I _S | SYMBOL CONDITIONS REF-02NT TYPICAL V _T (Notes 1, 2) 630 TCV _T (Notes 1, 2) 2.1 TCV _O 10 I _L = 0 to 10mA I _L = 0 to 8mA, NT, GT @ +125°C 0.007 e _{np-p} 0.1Hz to 10Hz 10 t _{ON} To ±0.1% of final value, NT, GT @ +125°C 7.5 I _{SY} No Load, NT, GT @ +125°C 1.4 I _L 21 I _S -0.5 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | SYMBOL CONDITIONS REF-02NT TYPICAL REF-02N TYPICAL REF-02GT TYPICAL VT (Notes 1, 2) 630 630 630 TCVT (Notes 1, 2) 2.1 2.1 2.1 TCVO 10 10 10 10 I L = 0 to 10mA IL = 0 to 8mA, NT, GT @ +125°C 0.007 0.005 0.009 enp-p 0.1Hz to 10Hz 10 10 10 tON TO ±0.1% of final value, NT, GT @ +125°C 7.5 5.0 7.5 I _{SY} No Load, NT, GT @ +125°C 1.4 1.0 1.4 I _L 21 21 21 I _S -0.5 -0.5 -0.5 | SYMBOL CONDITIONS REF-02NT TYPICAL REF-02N TYPICAL REF-02GT TYPICAL REF-02G TYPICAL VT (Notes 1, 2) 630 630 630 630 TCVT (Notes 1, 2) 2.1 2.1 2.1 2.1 TCVO 10 10 10 10 10 I_L = 0 to 10mA I_L = 0 to 8mA, NT, GT @ +125°C 0.007 0.005 0.009 0.006 enp-p 0.1Hz to 10Hz 10 10 10 10 tON To ±0.1% of final value, NT, GT @ +125°C 7.5 5.0 7.5 5.0 I_SY No Load, NT, GT @ +125°C 1.4 1.0 1.4 1.0 I_L 21 21 21 21 21 I_S -0.5 -0.5 -0.5 -0.5 | | #### NOTES: - 1. See AN-18 for detailed REF-02 thermometer applications information. - 2. Limit current in or out of pin 3 to 50nA and capacitance on pin 3 to 30pF. - For+25°C specifications of REF-02NT and REF-02GT, see REF-02N and REF-02G respectively. #### **OUTPUT ADJUSTMENT** The REF-02 trim terminal can be used to adjust the output voltage over a $5V \pm 300 \text{mV}$ range. This feature allows the system designer to trim system errors by setting the reference to a voltage other than 5V. Of course, the output can also be set to exactly 5.000V or to 5.12V for binary applications. Adjustment of the output does not significantly affect the temperature performance of the device. Typically, the temperature coefficient change is 0.7ppm/° C for 100mV of output adjustment. #### **OUTPUT ADJUSTMENT CIRCUIT** #### **BURN-IN CIRCUIT** #### TYPICAL PERFORMANCE CHARACTERISTICS OUTPUT WIDEBAND NOISE vs BANDWIDTH (0.1Hz TO FREQUENCY INDICATED) VS FREQUENCY 76 66 66 0.0031 0.0031 0.0031 0.031 0.031 0.031 0.031 1.0 VS = 15V TA = +25°C 1.0 1.0 3.1 FREQUENCY (Hz) 10 10.0 LINE REGULATION 0.035 0.030 VIN - 15V TA = TA - 25°C 75°C DEVICE IMMERSED IN 75°C OIL BATH -10 0 10 20 30 40 50 60 TIME (SEC) #### TYPICAL PERFORMANCE CHARACTERISTICS # MAXIMUM LOAD CURRENT vs INPUT VOLTAGE NORMALIZED LOAD REGULATION ($\Delta I_L = 10$ mA) vs TEMPERATURE NORMALIZED LINE REGULATION vs TEMPERATURE LINE REGULATION vs SUPPLY VOLTAGE MAXIMUM LOAD CURRENT vs TEMPERATURE QUIESCENT CURRENT vs TEMPERATURE #### **TYPICAL APPLICATIONS** #### ±5V REFERENCE #### \pm 2.5V REFERENCE #### PRECISION TEMPERATURE TRANSDUCER WITH REMOTE SENSOR | RESISTOR VALUES | 3 | | | |---------------------------------|----------------------|---------------------|---------------------| | TCV _{OUT} SLOPE (S) | 10mV/°C | 100mV/°C | 10mV/° F | | TEMPERATURE
RANGE | -55° C to
+125° C | -55°C to
+125°C | −67°F to
+257°C | | OUTPUT VOLTAGE
RANGE | -0.55V to
+1.25V | -5.5V to
+12.5V* | -0.67V to
+2.57V | | ZERO-SCALE | 0V @ 0°C | 0V @ 0°C | 0V @ 0° F | | R _a (± 1% resistor) | 9.09kΩ | 15kΩ | 7.5kΩ | | R _{b1} (± 1% resistor) | 1.5kΩ | 1.82kΩ | 1.21kΩ | | R _{bp} (Potentiometer) | 200Ω | 500Ω | 200Ω | | R _c (±1% resistor) | 5.11kΩ | 84.5kΩ | 8.25kΩ | ^{*}For 125°C operation, the op amp output must be able to swing to +12.5V, increase $V_{\rm IN}$ to +18V from +15V if this is a problem. #### TYPICAL TEMPERATURE VOLTAGE **OUTPUT vs TEMPERATURE (REF-02A)** #### REFERENCE STACK WITH EXCELLENT LINE REGULATION Two REF-01's and one REF-02 can be stacked to yield 5.000V, 15.000V and 25.000V outputs. An additional advantage of this circuit is near-perfect line regulation of the 5.0V and 15.0V outputs. A 27V to 55V input change produces an output change which is less than the noise voltage of the devices. A load bypass resistor (RB) provides a path for the supply current (I_{SY}) of the 15.000V regulator. In general, any number of REF-01's and REF-02's can be stacked this way. For example, ten devices will yield ten outputs in 5V or 10V steps. The line voltage can range from 100V to 130V. However, care must be taken to ensure that the total load currents do not exceed the maximum usable current (typically 21mA). #### **TEMPERATURE CONTROLLER** #### **PRECISION CURRENT SOURCE** A current source with 35V output compliance and excellent output impedance can be obtained using this circuit. REF-02 (2) keeps the line voltage and power dissipation constant in device (1); the only important error consideration at room temperature is the negative supply rejection of the op amp. The typical $3\mu V/V$ PSRR of the OP-02E will create a 20ppm change $(3\mu V/V \times 35V/5V)$ in output current over a 35V range. For example, a 5mA current source can be built (R = 1k Ω) with 350M Ω output impedance. $$R_O = \frac{35V}{20 \times 10^{-6} \times 5mA}$$ #### **CURRENT SOURCE** #### **CURRENT SINK** #### D/A CONVERTER REFERENCE #### ±3V REFERENCE #### SUPPLY BYPASSING For best results, it is recommended that the power supply pin is bypassed with a $0.1\mu F$ disc ceramic capacitor.