+10V Precision **Voltage Reference** **REF-01** ### **FEATURES** | • 10 Volt Output | ±0.3% Max | |---------------------------------|-------------------------| | Adjustment Range | ±3% Min | | Excellent Temperature Stability | . 8.5ppm/°C Max | | • Low Noise | 30μV _{D-D} Max | | Low Supply Current | | | Wide Input Voltage Range | 12V to 40V | | High Load-Driving Capability | 20mA | - No External Components - **Short-Circuit Proof** - MIL-STD-883 Screening Available - Available in Die Form ### ORDERING INFORMATION [†] | | | PACK | AGE | | | |---|----------|-----------------|------------------|--------------|----------------------------------| | T _A = 25°C
ΔV _{os} MAX
(mV) | | CERDIP
8-PIN | PLASTIC
8-PIN | | OPERATING
EMPERATURE
RANGE | | ±30 | REF01AJ* | REF01AZ* | | | MIL | | ±30 | REF01EJ | REF01EZ | | | СОМ | | ±50 | REF01J* | REF01Z* | | REF01RC/883 | MIL | | ±50 | REF01HJ | REF01HZ | REF01HP | - | СОМ | | ±100 | REF01CJ | REF01CZ | _ | _ | СОМ | | ±100 | _ | | REF01CP | _ | XIND | | ±100 | | | REF01CS†† | _ | XIND | - For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet. - Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages. - ft For availability and burn-in information on SO and PLCC packages, contact your local sales office. ### **GENERAL DESCRIPTION** The REF-01 precision voltage reference provides a stable +10V output which can be adjusted over a ±3% range with minimal effect on temperature stability. Single-supply operation over an input voltage range of 12V to 40V, low current drain of 1mA, and excellent temperature stability are achieved with an improved bandgap design. Low cost, low noise, and low power make the REF-01 an excellent choice whenever a stable voltage reference is required. Applications include D/A and A/D converters, portable instrumentation, and digital voltmeters. Full military temperature range devices with screening to MIL-STD-883 are available. For guaranteed long-term drift see the REF-10 data sheet. ### PIN CONNECTIONS Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700 Fax: 617/326-8703 Twx: 710/394-6577 Telex: 924491 Cable: ANALOG NORWOODMASS # **REF-01** ### **ABSOLUTE MAXIMUM RATINGS (Note 1)** | | Input Voltage | |-----------------|---------------------------------| | 40V | REF-01, A, E, H, RC, All DICE | | 30V | REF-01C | | | Output Short-Circuit Duration | | Indefinite | (to Ground or V _{IN}) | | | Storage Temperature Range | | 65° C to +150°C | J, RC, and Z Packages | | 65°C to +125°C | P Package | | | Operating Temperature Range | | –55°C to +125°C | REF-01A, REF-01, REF-01RC. | | | REF-01E, REF-01H, | | 0°C to +70°C | REF-01CJ, REF-01CZ | | 40°C to +85°C | REF-01CP, REF-01CS | | | tion Temperature (T _i)65°C to +150
 Temperature (Soldering, 60 sec)300 | | | | | | |------------------------|--|-----------------|-------|--|--|--| | PACKAGE TYPE | Θ _{jA} (NOTE 2) | Θ _{jC} | UNITS | | | | | TO-99 (J) | 170 | 24 | °C/W | | | | | 8-Pin Hermetic DIP (Z) | 162 | 26 | °C/W | | | | | 8-Pin Plastic DIP (P) | 110 | 50 | °C/W | | | | | 20-Contact LCC (RC) | 120 | 40 | °C/W | | | | | 8-Pin SO (S) | 160 | 44 | °C/W | | | | ### NOTES: 8-Pin SO (S) 20-Contact PLCC (PC) 1. Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted. 39 °C/W Θ_{jA} is specified for worst case mounting conditions, i.e., Θ_{jA} is specified for device in socket for TO, CerDIP, P-DIP, and LCC packages; Θ_{jA} is specified for device soldered to printed circuit board for SO and PLCC packages. ## **ELECTRICAL CHARACTERISTICS** at $V_{\text{IN}} = +15\text{V}$, $T_{\text{A}} = 25^{\circ}\text{C}$, unless otherwise noted. | PARAMETER | | | REF-01A/E | | | REF-01/H | | | | |--------------------------|--------------------|------------------------------|-----------|-------|-------|----------|-------|------------|-------------------| | | SYMBOL | CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | Output Voltage | V _o | I _L = 0 | 9.97 | 10.00 | 10.03 | 9.95 | 10.00 | 10.05 | V | | Output Adjustment Range | ΔV _{trim} | $R_p = 10k\Omega$ | ±3.0 | ±3.3 | | ±3.0 | ±3.3 | · <u> </u> | % | | Output Voltage Noise | e _{np-p} | 0.1Hz to 10Hz (Note 6) | _ | 20 | 30 | | 20 | 30 | μV _{p-p} | | Line Regulation (Note 4) | | V _{IN} = 13V to 33V | | 0.006 | 0.010 | . – | 0.006 | 0.010 | %/V | | Load Regulation (Note 4) | | I _L = 0 to 10mA | _ | 0.005 | 0.008 | | 0.006 | 0.010 | %/mA | | Turn-on Settling Time | ton | To ±0.1% of final value | _ | 5 | _ | _ | 5 | _ | μS | | Quiescent Supply Current | I _{SY} | No Load | _ | 1.0 | 1.4 | | 1.0 | 1.4 | mA | | Load Current | IL | | 10 | 21 | | 10 | 21 | _ | mA | | Sink Current | Is | (Note 7) | -0.3 | -0.5 | _ | -0.3 | -0.5 | _ | mA | | Short-Circuit Current | I _{SC} | V _O = 0 | _ | 30 | _ | _ | 30 | | mA | ### **ELECTRICAL CHARACTERISTICS** at $V_{IN} = +15V$, $-55^{\circ}C \le T_A \le +125^{\circ}C$ for REF-01 A/E, and $0^{\circ}C \le T_A \le +70^{\circ}C$ for REF-01 H and $I_L = 0$ mA, unless otherwise noted. | | | , | REF-01A/E | | | | | | | |---|------------------|---|-----------|----------------|----------------|-------------|----------------|----------------|--------| | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | Ouput Voltage Change with
Temperature (Notes 1, 2) | ΔV _{OT} | 0° C ≤ T _A ≤ +70° C
-55° C ≤ T _A ≤ +125° C | _ | 0.02
0.06 | 0.06
0.15 | | 0.07
0.18 | 0.17
0.45 | % | | Output Voltage
Temperature Coefficient | TCVo | (Note 3) | | 3.0 | 8.5 | _ | 10.0 | 25.0 | ppm/°C | | Change in V _O Temperature
Coefficient with Output
Adjustment | | $R_p = 10k\Omega$ | _ | 0.7 | _ | | 0.7 | - | ppm/% | | Line Regulation (V _{IN} = 13V to 33V) (Note 4) | | 0° C ≤ T _A ≤ +70° C
-55° C ≤ T _A ≤ +125° C | _ | 0.007
0.009 | 0.012
0.015 | | 0.007
0.009 | 0.012
0.015 | %/V | | Load Regulation (I _L = 0 to 8mA) (Note 4) | | 0° C ≤ T _A ≤ +70° C
-55° C ≤ T _A ≤ +125° C | _ | 0.006
0.007 | 0.010
0.012 | | 0.007
0.009 | 0.012
0.015 | %/mA | ### NOTES: ΔV_{OT} is defined as the absolute difference between the maximum output voltage and the minimum output voltage over the specified temperature range expressed as a percentage of 10V: $\Delta V_{OT} = \left| \frac{V_{MAX} - V_{MIN}}{10V} \right| \times 100$ $$\Delta V_{OT} = \left| \frac{V_{MAX} - V_{MIN}}{10V} \right| \times 100$$ - 2. ΔV_{OT} specification applies trimmed to +10.000V or untrimmed. - 3. TCV_O is defined as ΔV_{OT} divided by the temperature range, i.e., $$\text{TCV}_{O}\left(0^{\circ} \text{ to } +70^{\circ} \text{C}\right) = \ \frac{\Delta \text{V}_{OT}\left(0^{\circ} \text{ to } +70^{\circ} \text{C}\right)}{70^{\circ} \text{C}}$$ and TCV $_{O}$ (-55° to +125°C) = $\frac{\Delta V_{OT}$ (-55° to +125°C) - 4. Line and Load Regulation specifications include the effect of self heating. - Guaranteed by design. - Sample tested. - During sink current test the device meets the output voltage specified. ## **ELECTRICAL CHARACTERISTICS** at $V_{IN} = +15V$, $T_A = 25$ °C, unless otherwise noted. | | | | | REF-01C | ; | | |--------------------------|--------------------|------------------------------|--------------|---------|----------|---------------| | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | | Output Voltage | v _o | I _L = 0mA | 9.90 | 10.00 | 10.10 | V | | Output Adjustment Range | ΔV _{trim} | $R_p = 10k\Omega$ | ±2.7 | ±3.3 | | % | | Output Voltage Noise | e _{np-p} | 0.1Hz to 10Hz (Note 6) | - | 25 | 35 | μV_{p-p} | | Line Regulation (Note 4) | | V _{IN} = 13V to 30V | _ | 0.009 | 0.015 | %/V | | Load Regulation (Note 4) | | I _L = 0 to 8mA | _ | 0.006 | 0.015 | %/mA | | Turn-on Settling Time | t _{ON} | To ±0.1% of final value | | 5 | <u> </u> | μS | | Quiescent Supply Current | ISY | No Load | _ | 1.0 | 1.6 | mA | | Load Current | I _L | | 8 | 21 | _ | mA | | Sink Current | Is | (Note 7) | -0.3 | -0.5 | months: | mA | | Short-Circuit Current | SC | V _O = 0 | _ | 30 | _ | mA | # **ELECTRICAL CHARACTERISTICS** at $V_{IN} = +15V^{\circ}C \le T_{A} \le +70^{\circ}C$ for REF-01CJ, CZ, $-40^{\circ}C \le T_{A} \le +85^{\circ}C$ for REF-01CP,CS, unless otherwise noted. | PARAMETER | SYMBOL | CONDITIONS - | MIN | TYP | MAX | UNITS | |---|------------------|------------------------------|-----|-------|-------|--------| | Ouput Voltage Change with Temperature | ΔV _{OT} | (Notes 1 and 2) | _ | 0.14 | 0.45 | % | | Output Voltage
Temperature Coefficient | TCVo | (Note 3) | _ | 20 | 65 | ppm/°C | | Change in V _O Temperature
Coefficient with Output
Adjustment | | $R_p = 10k\Omega$ | | 0.7 | _ | ppm/% | | Line Regulation (Note 4) | | V _{IN} = 13V to 30V | _ | 0.011 | 0.018 | %/V | | Load Regulation (Note 4) | | I _L = 0 to 5mA | _ | 0.008 | 0.018 | %/mA | ### NOTES: AV_{OT} is defined as the absolute difference between the maximum output voltage and the minimum output voltage over the specified temperature range expressed as a percentage of 10V: $$\Delta V_{OT} = \left| \frac{V_{MAX} - V_{MIN}}{10V} \right| \times 100$$ - 2. ΔV_{OT} specification applies trimmed to $\pm 10.000V$ or untrimmed. - 3. TCV_0 is defined as ΔV_{OT} divided by the temperature range, i.e., $$TCV_O = \frac{\Delta V_{OT}}{70^{\circ}C}$$ - Line and Load Regulation specifications include the effect of self heating. - 5. Guaranteed by design. - 6. Sample tested. - 7. During sink current test the device meets the output voltage specified. ### **OUTPUT ADJUSTMENT** The REF-01 trim terminal can be used to adjust the output voltage over a 10V \pm 300mV range. This feature allows the system designer to trim system errors by setting the reference to a voltage other than 10V. Of course, the output can ### **BURN-IN CIRCUIT** also be set to exactly 10.000V, or to 10.240V for binary applications. Adjustment of the output does not significantly affect the temperature performance of the device. The temperature coefficient change is approximately 0.7 ppm/° C for 100mV of output adjustment. # **REF-01** ### DICE CHARACTERISTICS (125°C TESTED DICE AVAILABLE) DIE SIZE 0.074×0.048 inch, 3552 sq. mils (1.88 imes 1.22 mm, 2.29 sq. mm) - 2. INPUT VOLTAGE (VIN) - 4. GROUND - 5. TRIM - 6. OUTPUT VOLTAGE (V_{OUT}) **WAFER TEST LIMITS** at V_{IN} = +15V, T_A = 25° C for REF-01N and REF-01G devices; T_A = 125° C for REF-01NT and REF-01GT devices, unless otherwise noted. (Note 1) | PARAMETER | SYMBOL | CONDITIONS | REF-01NT | REF-01N
LIMIT | REF-01GT | REF-01G | UNITS | |----------------------------|-------------------|------------------------------|---------------|------------------|---------------|---------------|----------------| | Output Voltage | v _o | I _L = 0 | 10.05
9.95 | 10.03
9.97 | 10.10
9.90 | 10.05
9.95 | V MAX
V MIN | | Output Adjustment
Range | V _{trim} | $R_P = 10k\Omega$ | _ | ±3.0 | | ±3.0 | % MIN | | Line Regulation | | V _{IN} = 13V to 33V | 0.015 | 0.01 | 0.015 | 0.01 | %/V MAX | Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing. ## TYPICAL ELECTRICAL CHARACTERISTICS at $V_{IN} = +15V$, $T_A = 25^{\circ}$ C, unless otherwise noted. | PARAMETER | SYMBOL | CONDITIONS | REF-01NT
TYPICAL | REF-01N
TYPICAL | REF-01GT
TYPICAL | REF-01G
TYPICAL | UNITS | |---|-------------------|---|---------------------|--------------------|---------------------|--------------------|-------------------| | Load Regulation | | I _L = 0 to 10mA
I _L = 0 to 8mA, NT, GT @ +125° C | 0.007 | 0.005 | 0.009 | 0.006 | %/mA | | Output Voltage Noise | e _{np-p} | 0.1Hz to 10Hz | 20 | 20 | 20 | 20 | μV _{p-p} | | Turn-On Settling Time | t _{ON} | To $\pm 0.1\%$ of Final Value NT, GT @ $+ 125^{\circ}$ C | 7.5 | 5.0 | 7.5 | 5.0 | με | | Quiescent Current | I _{SY} | No Load, NT, GT @ +125° C | 1.4 | 1.0 | 1.4 | 1.0 | mA | | Load Current | I _L | | 21 | 21 | 21 | 21 | mA | | Sink Current | Is | | -0.5 | -0.5 | -0.5 | -0.5 | mA | | Short-Circuit Current | I _{sc} | V _O = 0 | 30 | 30 | 30 | 30 | mA | | Output Voltage
Temperature Coefficient | TCVo | | 10 | 10 | 10 | 10 | ppm/°C | ### NOTE: ^{1.} For $\pm 25^{\circ}$ C specifications of REF-01NT and REF-01GT, see REF-01N and REF-01G respectively. ### TYPICAL PERFORMANCE CHARACTERISTICS **OUTPUT WIDEBAND** # **REF-01** ### **TYPICAL APPLICATIONS** ### D/A CONVERTER REFERENCE ### A/D CONVERTER REFERENCE ### PRECISION CALIBRATION STANDARD ### ±10V REFERENCE ### **CURRENT SOURCE** ### **CURRENT SINK** ### PRECISION CURRENT SOURCE A current source with 25V output compliance and excellent output impedance can be obtained using this circuit. REF-01 $\begin{tabular}{ll} \hline 2 \end{tabular}$ keeps the line voltage and power dissipation constant in device $\begin{tabular}{ll} \hline 1 \end{tabular}$; the only important error consideration at room temperature is the negative supply rejection of the op amp. The typical $3\mu V/V$ PSRR of the OP-02E will create an 8ppm change $(3\mu V/V\times25V/10V)$ in output current over a 25V range. For example, a 10mA current source can be built (R = 1k Ω) with 300M Ω output impedance. $$R_O = \frac{25V}{8 \times 10^{-6} \times 10 \text{mA}}$$ # REFERENCE STACK WITH EXCELLENT LINE REGULATION Three REF-01's can be stacked to yield 10.000, 20.000, and 30.000V outputs. An additional advantage is near-perfect line regulation of the 10.0V and 20.0V output. A 32V to 60V input change produces an output change which is less than the noise voltage of the devices. A load bypass resistor ($R_{\rm B}$) provides a path for the supply current ($I_{\rm SY}$) of the 20.000V regulator. In general, any number of REF-01's can be stacked this way. For example, ten devices will yield outputs of 10, 20, 30 . . . 100V. The line voltage can range from 105V to 130V. However, care must be taken to ensure that the total load currents do not exceed the maximum usable current (typically 21mA). ### **SUPPLY BYPASSING** REV. B For best results, it is recommended that the power supply pin is bypassed with a $0.1\mu F$ disc ceramic capacitor. -7-