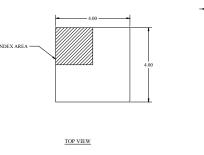


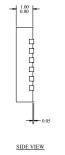
Preliminary RFS1000

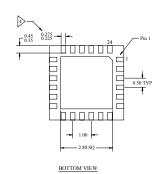
2.1-2.7 GHz Power Amplifier

Applications

- MDS/WCS/MMDS fixed-wireless equipment
- 2.4 GHz ISM Band Wireless Transmitter
- MMDS Video Transmitter


Product Description


The RFS1000 power amplifier is a high-power, high-performance GaAs MESFET IC designed for use in transmit applications in the 2.1-2.7 GHz frequency band. With a P1dB of 31 dBm, the device is ideal as a final stage for wireless applications requiring high transmit linearity. The input of the PA is matched to 50 ohms and the output can be easily matched for optimum linearity and power performance at the desired frequency of operation between 2.1 and 2.7 GHz.


Product Features

- 31 dBm P1dB
- 18 dB gain
- Input matched to 50 ohms
- Simple output matching

f Functional Block Diagram

1 ALL DIMENSIONS ARE IN MILLIMETERS, ANGLES IN DEGREES.

2 THE TERMINAL #1 IDENTIFIER AND PAD NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012

3 LEAD COPLANARITY: 0.05 MAX.

4 DIMENSION APPLIES TO METALLIZED PAD AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM PAD TIP.

4mm Package Outline

Preliminary RFS1000

2.1-2.7 GHz Power Amplifier

_	Specification			l lmit	Condition
Parameter ¹	Min.	Тур.	Max.	Unit	Condition
Overall					
Frequency Range	2100		2700	MHz	
Output P1dB		31		dBm	
Efficiency at P1dB		37		%	
Small Signal Gain		18		dB	$P_{IN} = -20 dBm$
Gain Flatness		±0.75		dB	Over 200 MHz Band
Harmonics					
2 nd Harmonic		-35		dBc	
3 rd Harmonic		-35		dBc	
Spurious (Stability) ²		-60		dBc/30 kHz	$P_{IN} = -30 \text{ to } +14 \text{ dBm}$
Reverse Isolation		50		dB	$P_{IN} = -20 \text{ dBm}$
Noise Figure		6		dB	$P_{IN} = -20 \text{ dBm}$
Input Impedance		50		Ω	$P_{IN} = -20 \text{ dBm}$
Input Return Loss	10	14		dB	$P_{IN} = -20 \text{ dBm}$
Output Return Loss		11		dB	$P_{IN} = -20 \text{ dBm}$
Power Supply					
Drain Operating Voltage		7		V	
Gate Operating Voltage		-1.0		V	
Current Consumption		485		mA	
Gate Leakage Current		50		μA	

Note 1: Test Conditions: V_{DD} =7.0V, P_{IN} =+14dBm, Freq.=2593MHz, V_{GG} =-1.0 V, T=25C., unless otherwise specified. Note 2: Load VSWR is set to 7:1 and the angle is varied 360 degrees.

Absolute Maximum Ratings

Parameter		Unit
DC Power Supply	8.0	V
DC Gate Voltage	-5.0 min, -0.5 max	V
Maximum RF Input Power	+20	dBm
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-55 to +150	°C

The information provided herein is believed to be reliable; however, RF Solutions assumes no responsibility for in-accuracies or omissions. RF Solutions assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. RF Solutions does not authorize or warrant any RF Solutions product for use in life support devices and/or systems.

