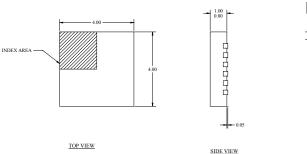


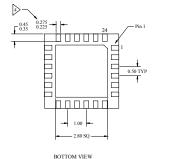
Applications

- 802.11a WLAN
- HiperLAN/2 WLAN
- U-NII fixed wireless equipment

🗹 Functional Block Diagram

Advanced RFSF5150


5.15-5.85 GHz U-NII PA/LNA/Switch


Product Description

The RFSF5150 PA/LNA/Switch is a high-performance GaAs IC designed for use in transmit/receive applications in the 5.15-5.85 GHz frequency band. With a P1dB of 23 dBm in the PA, the part is ideal as a final stage for wireless LAN applications requiring high transmit linearity. The LNA has both high gain and high input IP3 for systems requiring high front-end linearity. The switch optimizes performance of the LNA and PA with very low insertion loss and a high P1dB. The PA input, LNA input and output, and switches are all matched to 50 ohms. The part operates off a single positive supply.

Product Features

- 18 dBm cascaded TX P1dB@3.3V
- 15 dB cascaded TX gain
- 11 dBm cascaded RX P1dB@3.0V
- 9 dB cascaded RX gain
- Low switch loss of 1.5 dB
- 20 dB isolation per switch
- Single positive supply
- PA power on/off logic

MILLIMETERS, ANGLES IN DEGREES

2 THE TERMINAL #1 IDENTIFIER AND PAD NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012

3 LEAD COPLANARITY: 0.05 MAX

4 DIMENSION APPLIES TO METALLIZED PAD AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM PAD TIP.

4x4 mm Package Outline

Advanced RFSF5150

5.15-5.85 GHz U-NII PA/LNA/Switch

Parameter Frequency Range	Min.				
		arameter Min. Typ. Max.	Unit	Condition	
Transmit Dath	5150		5850		
Transmit Path					
Cascaded Gain		15		dB	
Cascaded Output P1dB		18		dBm	
Receive Path					
Cascaded Gain		9	! 	dB	
Cascaded Output P1dB		11		dBm	
Cascaded Noise Figure		4.8		dB	
PA¹		1.0		uD.	
Output P1dB	1	23	l 	dBm	
Gain		18		dB	
Gain Flatness		±1.0		dB	Across 200 MHz Band
Harmonics		±1.0		ub.	ACIOSS 200 WIIIZ Balla
2 nd Harmonic		-30		dBc	@ P1dB
3 rd Harmonic		-30		dBc	@ PldB
Spurious (Stability) ²	l I	-60	! !	dBc/30 kHz	$ P_{IN} = -20 \text{ dBm to P1dB}$
Reverse Isolation		35		dBC/30 kHz	$r_{\rm IN} = -20$ ubili to Flub
Noise Figure		6		dB	
Input Return Loss		14		dB	With matching capacitor
Output Return Loss		10		dB	With matching capacitor
Current Consumption		100		mA	P _{OUT} = 18 dBm
LNA ³		100		IIIA	1007 - 10 dBm
Noise Figure		1.8		dB	
Gain		1.8		dBm	
Input IP3		9		dBm	
Gain Flatness		±0.5		dB	Across 200 MHz Band
Reverse Isolation	l I	25	l I	dB	Across 200 MHZ Balld
Input Return Loss		10		dB	
Output Return Loss		10		dB	
Current Consumption		10		mA	
Switch ⁴		10		1117 \$	
Insertion Loss		1.5		dB	per switch
Input P1dB	l I	27	! !	dBm	per switch
Isolation		20		dB	per switch
Return Loss (all SW ports)		14		dB	per switch
Switch Control		14		uD	
High State		2		V	
Low State		0		V	
SW VC1 setting		3		V	ANT2 selection
Sw vCi setting		0		V	ANT1 selection
SW VC2 setting		0		V	SW Rx selection
5 Transfer of the second		3		v	SW_Tx selection
Current Consumption		50		uA	
Power Supply					
Operating Voltage		3.3		V	l PA
Operating voltage		3.0		v	LNA & Switches

Note 1: PA Test Conditions: $V_{CC} = 3.3V$, $P_{OUT} = +18$ dBm, Freq. = 5250 MHz, T = 25°C.

Note 2: Load VSWR is set to 7:1 and the angle is varied 360 degrees.

Note 3: LNA Test Conditions: $V_{CC}=3.0V,\ P_{IN}=-20\ dBm,\ Freq.=5250\ MHz,\ T=25^{\circ}C.$ Note 4: Switch Test Conditions: $V_{CC}=3.0V,\ P_{IN}=-20\ dBm,\ Freq.=5250\ MHz,\ T=25^{\circ}C.$

Advanced RFSF5150

5.15-5.85 GHz U-NII PA/LNA/Switch

Absolute Maximum Ratings

Parameter	Rating	Unit
DC Power Supply	6.0	V
DC Supply Current	600	mA
Maximum PA RF input level	+9	dBm
Maximum LNA RF input level	+2	dBm
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-55 to +150	°C

The information provided herein is believed to be reliable; however, RF Solutions assumes no responsibility for inaccuracies or omissions. RF Solutions assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. RF Solutions does not authorize or warrant any RF Solutions product for use in life support devices and/or systems.

