AlGaAs laser diodes RLD-78PP-B / RLD-78NP-D

The RLD-78PP-B and RLD-78NP-D are the world's first mass-produced laser diodes those are manufactured by molecular beam epitaxy. The characteristics of these laser diodes are suitable for laser beam printers.

ApplicationsLaser beam printers

Features

- One-third dispersion compared with conventional laser diodes.
- 2) High-precision, compact package.
- 3) Low droop.
- 4) Can be driven by single power supply.

External dimensions (Units: mm)

●Absolute maximum ratings (Tc = 25°C)

Parameter		Symbol	Limits	Unit
Output		Po	5	mW
Reverse voltage	Laser	VR	2	V
	PIN photodiode	VR (PIN)	30	V
Operating temperature		Topr	−10~ +60	°C
Storage temperature		Tstg	−40~+85	°C

• Electrical and optical characteristics (Tc = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Threshold current	Ith	15	25	45	mA	_	
Operating current	lop	25	45	65	mA	Po=3mW	
Operating voltage	Vop	_	1.9	2.3	٧	Po=3mW	
Differential efficiency	η	0.1	0.2	0.3	mW/mA	2mW I(3mW)—I(1mW)	
Monitor current	lm	0.3	0.55	0.9	mA	Po=3mW	
Parallel divergence angle	<i>θ</i> // *	8	11	15	deg		
Perpendicular divergence angle	<i>θ</i> ⊥*	25	30	38	deg	Po=3mW	
Parallel deviation angle	Δ φ //	_	_	±2	deg		
Perpendicular deviation angle	∆ ø ⊥	_	_	±з	deg		
Emission point accuracy	ΔX ΔΥ ΔΖ	_	_	±80	μm	_	
Peak emission wavelength	λ	770	785	795	nm	Po=3mW	
Droop	ΔΡ	_	5	10	%	Po=3mW	

^{*} θ // and θ \perp are defined as the angle within which the intensity is 50% of the peak value.

Electrical and optical characteristic curves

ANGLE (deg)

Fig. 1 Optical output vs. operating current

Fig. 2 Dependence of threshold current on temperature

Fig. 3 Far field pattern

Fig. 4 Dependence of wavelength on temperature

Fig. 5 Dependence of emission spectrum on optical output

Fig. 6 Monitor current vs. optical output

Fig. 7 Temperature vs. output guidelines for various droop percentages

Fig. 8 Dependence of droop on output and temperature

Distributor: Laser Components GmbH, Germany

Phone: ++49 (0)8142 28640, Fax: ++49 (0)8142 286411, e-mail: info@lasercomponents.com

www.lasercomponents.com