

CDMA/TDMA/PACS 1900MHZ 3V POWER AMPLIFIER

Typical Applications

- PACS Handsets and Base Stations
- 3V 1850-1910MHz CDMA PCS Handsets
- 3V 1750-1780MHz CDMA PCS Handsets
- 3V TDMA PCS Handsets
- Spread-Spectrum Systems
- Commercial and Consumer Systems

Product Description

The RF2153 is a high-power, high-efficiency linear amplifier IC targeting 3V handheld systems. The device is manufactured on an advanced Gallium Arsenide Heterojunction Bipolar Transistor (HBT) process, and has been designed for use as the final RF amplifier in 3V CDMA and TDMA handheld digital equipment, spread-spectrum systems, and other applications in the 1750MHz to 1910MHz band. The device is packaged in a compact 4mmx4mm (LCC). The device's frequency response can be optimized for linear performance in the 1750MHz to 1910MHz band.

Optimum Technology Matching® Applied

- ☐ Si BJT
 ☐ Si Bi-CMOS
- ✓ GaAs HBT☐ SiGe HBT
- ☐ GaAs MESFET
- Si CMOS

Functional Block Diagram

Package Style: MP16KO1A

Features

- Single 3V Supply
- 29dBm Linear Output Power
- 30dB Linear Gain
- 33% Linear Efficiency CDMA
- 40% Linear Efficiency TDMA
- On-board Power Down Mode

Ordering Information

RF2153 CDMA/TDMA/PACS 1900MHz 3V Power Amplifier RF2153 PCBA Fully Assembled Evaluation Board

RF Micro Devices, Inc. 7625 Thorndike Road Greensboro, NC 27409, USA

Tel (336) 664 1233 Fax (336) 664 0454 http://www.rfmd.com

RF2153

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage (RF off)	+8.0	V_{DC}
Supply Voltage (P _{OUT} ≤31dBm)	+4.5	V_{DC}
Mode Voltage (V _{MODE})	+3.5	V_{DC}
Control Voltage (V _{PD})	+3.5	V_{DC}
Input RF Power	+10	dBm
Operating Case Temperature	-30 to +110	℃
Storage Temperature	-30 to +150	°C

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Parameter	Specification			l lmi4	Condition	
Parameter	Min.	Тур.	Max.	Unit		
Overall - CDMA					T=25°C, V _{CC} =3.4V unless otherwise speci-	
Usable Frequency Range	1750		1910	MHz	fied	
Typical Frequency Range		1750-1780 1850-1910		MHz MHz	Output Matching Network Tune Output Matching Network Tune	
Small Signal Gain	30	32	34	dB	V _{MODE} =Low 0V to 0.5V	
	26	29			V _{MODE} =High 2.5V to 3.0V	
Linear Gain	26	29		dB	V _{MODE} =High 2.5V to 3V	
					P_{OUT} =29dBm, V_{CC} =3.4V, V_{REG} =2.8V	
Second Harmonic (including second harmonic trap)		-35		dBc	Y	
Third Harmonic		-40		dBc		
Fourth Harmonic		-45		dBc		
Minimum Linear Output Power (CDMA or TDMA Modulation)	29			dBm		
Idle Current	90	100	200	mA	V _{MODE} =>2.5 V	
CDMA Linear Efficiency	30	33			P_{OUT} =29dBm, V_{CC} =3.4V, V_{REG} =2.8V	
CDMA Adjacent Channel Power Rejection @ 1.25MHz		-46	-44	dBc	P_{OUT} =29dBm, V_{CC} =3.4V, V_{REG} =2.8V	
Minimum Linear Output Power (CDMA Modulation)	28	+29		dBm	V_{CC} =3.0V, V_{REG} =2.8V	
Input VSWR		< 2:1				
Output Load VSWR	10:1				No Damage.	
Turn On/Off Time		0)	40	μs		
Overall - TDMA					T=25°C, V _{CC} =3.4V unless otherwise specified	
Idle Current	(0)	250	500	mA	V _{MODE} =0V to 0.5V	
TDMA Linear Efficiency	30	40		%	P _{OUT} =30dBm, V _{CC} =3.4V, V _{REG} =2.8V	
TDMA ACP @ 30kHz		-29	-28	dBc	P _{OUT} =30dBm	
TDMA ALT @ 60kHz		-49	-48	dBc	P _{OUT} =30dBm	
See						

2-122 Rev A19 020130

Power Supply Power Supply Voltage 3.0 3.4 4.5 V Total pins 6 and 8 V _{PD} and M _{ROB} Current 10 μA V _{PD} and M _{ROB} Current 111 13 mA Total pins 6, 7 and 8 V _{PD} 1-ligh* Voltage 2.7 2.8 2.9 V Woltage 2.5 2.8 V R1 = 1 kΩ MODE* Tum* Voltage Stability 20:1 Spurious Spuri	Parameter		Specification	n	Unit	Condition
Power Supply Power Supply Voltage 3.0 3.4 4.5 V V _{PD} Current 10 mA Total pins 6 and 8 V _{PD} and V _{MODE} Current 111 13 mA Total pins 6, 7 and 8 Total Current (Power down) 10 μA V _{PD} = low V _{PD} "High" Voltage 2.7 2.8 2.9 V MODE "High" Voltage 2.5 2.8 V R1=1kΩ MODE "Low" Voltage 3.1 Inband Outband Spurious C-60 dBc MBm/Hz @80MHz offset	raiaiiielei	Min.	Тур.	Max.	Uiill	Condition
Power Supply Voltage	Power Supply					
VPD and VMODE Current 11 13 mA Total pins 6, 7 and 8 Total Current (Power down) 0 0.2 V Vpp "High" Voltage 2.7 2.8 2.9 V MODE "High" Voltage 2.5 2.8 V R1=1kΩ MODE "Low" Voltage 3:1 V R1=1kΩ Stability 3:1 Dutband Outband Spurious <-60		3.0	3.4	4.5	V	
V _{PD} and V _{MODE} Current 11 13 mA Total pins 6, 7 and 8 Total Current (Power down) 0 0.2 V V _{PD} "High" Voltage 2.7 2.8 2.9 V MODE "High" Voltage 2.5 2.8 V R1=1kΩ MODE "Low" Voltage 3:1 Inband Outband Stability 2:0:1 dBc dBc Noise Power -136 dBm/Hz @80MHz offset					mA	Total pins 6 and 8
Total Current (Power down) V _{PD} "Low" Voltage V _{PD} "High" Voltage V _{PD} "High" Voltage MODE "Low" Voltage Stability Spurious Noise Power 10 μA V _{PD} = low V V _{PD} = l			11	13	mA	Total pins 6, 7 and 8
V _{PD} "Low" Voltage 0 0.2 V V _{PD} "High" Voltage 2.7 2.8 2.9 V MODE "High" Voltage 2.5 2.8 V R1=1kΩ MODE "Low" Voltage 0 0.5 V R1=1kΩ Inband Inband Outband Spurious <-60				10	μΑ	
Vpp "High" Voltage 2.7 2.8 2.9 V MODE "High" Voltage 2.5 2.8 V R1=1kΩ MODE "Low" Voltage 3:1 Noise Power V R1=1kΩ Stability 3:1 Noise Power V R1=1kΩ Spurious 4-60 dBc Outband Outband Noise Power -136 dBm/Hz @80MHz offset			0	0.2		
MODE "High" Voltage 2.5 2.8 V R1=1kΩ MODE "Low" Voltage 3:1 V R1=1kΩ Stability 20:1 Inband Outband Spurious <-60	-	2.7			V	
MODE "Low" Voltage Stability 3:1 Inband Outband Spurious Noise Power 1.36 No.5 V R1=1kΩ Inband Outband Outban						R1=1kO
Stability 3:1 20:1 Spurious Noise Power 3:1 20:1 4Be dBe dBm/Hz @80MHz offset				0.5		
Spurious Noise Power			3:1			
Noise Power -136 dBm/Hz @ 80 MHz offset						Outband
O COULCE PERO CONTRACTOR OF CO						
Jpograded Product Product	Noise Power		-136		dBm/Hz	@ 80 MHz offset
7 1/4						

RF2153

Pin	Function	Description	Interface Schematic
1	VCC2	Power supply for second stage and interstage match. Pins 1, 15 and 16 should be connected by a common trace where the pins contact the printed circuit board.	
2	GND2	Ground for second stage. Keep traces physically short and connect immediately to ground plane for best performance. This ground should be isolated from the backside ground contact on top metal layer.	
3	VCC1	Power supply for first stage and interstage match. V _{CC} should be fed through a 1.5 nH inductor terminated with a 15 pF capacitor on the supply side.	See pin 4.
4	RF IN	RF input. An external 15pF series capacitor is required as a DC block and also provides for an input VSWR of <2:1 typical.	VCC1 RF IN O From Bias Network GND1
5	GND1	Ground for first stage. Keep traces physically short and connect immediately to ground plane for best performance. This ground should be isolated from the backside ground contact on top metal layer.	See pin 4.
6	VPD1	Power Down control for first and second stages. When this pin is "low", all first and second stage circuits are shut off. When this pin is 2.8V, all first stage circuits are operating normally. V _{PD1} requires a regulated 2.8V for the amplifier to operate properly over all specified temperature and voltage ranges. A dropping resistor from a higher regulated voltage may be used to provide the required 2.8V.	
7	VMODE	For full power operation, MODE is set low. VMODE will reduce the bias current by up to 50% when set HIGH. Large Signal Gain is reduced approximately 1.5dB at 29dBm P _{OUT} and Small Signal Gain is reduced approximately 6dB. An external series resistor is optional to limit the amount of current required by the V _{MODE} pin.	
8	VPD2	Power Down control for the third stage. When this pin is "low", the third stage circuit is shut off. When this pin is 2.8 V, the third stage circuit is operating normally. V _{PD} requires a regulated 2.8 V for the amplifier to operate properly over all specified temperature and voltage ranges. A dropping resistor from a higher regulated voltage may be used to provide the required 2.8 V. A 15pF high frequency bypass capacitor is recommended.	
9	BIAS GND	Requires a 15nH inductor.	
10	RF OUT	RF output and power supply for final stage. This is the unmatched collector output of the third stage. A DC block is required following the matching components. The biasing may be provided via a parallel L-C set for resonance at the operating frequency of 1850MHz to 1910MHz. It is important to select an inductor with very low DC resistance with a 1A current rating. Alternatively, shunt microstrip techniques are also applicable and provide very low DC resistance. Low frequency bypassing is required for stability.	RF OUT From Bias Network
11	RF OUT	Same as pin 12.	See pin 10.
12	RF OUT	Same as pin 12.	See pin 10.
13	2FO	Second harmonic trap. Keep traces physically short and connect immediately to ground plane. This ground should be isolated from backside ground contact.	
14	VCC	Supply for bias reference and control circuits. High frequency bypassing may be necessary.	
15	-VCC2	Same as pin 1.	
16	VCC2	Same as pin 1.	
Pkg Base	GND	Ground connection. The backside of the package should be soldered to a top side ground pad which is connected to the ground plane with multiple vias. The pad should have a short thermal path to the ground plane.	

2-124 Rev A19 020130

Application Schematic US - CDMA

Application Schematic Korea - CDMA

2-126 Rev A19 020130

Application Schematic US - TDMA

Evaluation Board Schematic US - CDMA

2-128 Rev A19 020130

Evaluation Board Schematic Korea - CDMA

Board	R2 (Ω)	C30 (pF)	C1 (pF)	L1 (nH)	C15 (pF)
CDMA (Korea)	180	11	5.6	12	2.2

	Transmission Line Length	TL,	TL_2	TL_3	TL ₄
30	CDMA (Korea)	30 mils	100 mils	30 mils	100 mils or ≥ 2.7 nH inductor
S					

Evaluation Board Schematic US - TDMA

Board	R2 (Ω)	C30 (pF)	C1 (pF)	L1 (nH)	C15 (pF)
TDMA (US)	100	10	4.7	12	1.8
50		POL			

Transmission Line Length	TL₁	TL_2	TL ₃
TDMA (US)	20 mils	160 mils	10 mils

2-130 Rev A19 020130

Evaluation Board Layout US - CDMA

Board Size 2.0" x 2.0"

Board Thickness 0.031", Board Material FR-4

Evaluation Board Layout Korea - CDMA

Evaluation Board Layout US - TDMA

2-132 Rev A19 020130