

October 1995

6A, 1200V Ultrafast Dual Diode

Features

•	Ultrafast with Soft Recovery <70ns
•	Operating Temperature +175°C
•	Reverse Voltage

- · Avalanche Energy Rated
- Planar Construction

Applications

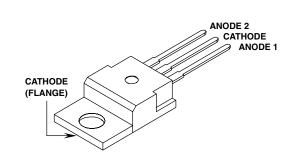
- Switching Power Supplies
- · Power Switching Circuits
- General Purpose

Description

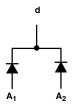
The RURP6120CC is an ultrafast dual diode with soft recovery characteristics (t_{RR} < 70ns). It has low forward voltage drop and is silicon nitride passivated ion-implanted epitaxial planar construction.

This device is intended for use as a freewheeling/clamping diode and rectifier in a variety of switching power supplies and other power switching applications. Its low stored charge and ultrafast soft recovery minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.

PACKAGE AVAILABILITY


PART NUMBER	PACKAGE	BRAND
RURP6120CC	TO-220AB	RUR6120C

NOTE: When ordering, use the entire part number.


Formerly developmental type TA49039.

Package

JEDEC TO-220AB

Symbol

Absolute Maximum Ratings (per leg) $T_C = +25$ °C, Unless Otherwise Specified

	RURP6120CC	UNITS
Peak Repetitive Reverse Voltages	1200	V
Working Peak Reverse VoltageV _{RWM}	1200	V
DC Blocking Voltage	1200	V
Average Rectified Forward Current $I_{F(AV)}$ $T_C = +140^{\circ}C$	6	Α
Repetitive Peak Surge CurrentI _{FSM} Square Wave, 20kHz	12	Α
Nonrepetitive Peak Surge Current	60	Α
Maximum Power Dissipation	50	W
Avalanche Energy (See Figures 10 and 11)	10	mj
Operating and Storage Temperature	-65 to +175	°C

Specifications RURP6120CC

Electrical Characteristics (per leg) $T_C = +25^{\circ}C$, Unless Otherwise Specified

		RURP6120CC LIMITS			
SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNITS
V _F	I _F = 6A, T _C = +25°C	-	-	2.1	V
	I _F = 6A, T _C = +150°C	-	-	1.9	V
I _R	V _R = 1200V, T _C = +25°C	-	-	100	μА
	V _R = 1200V, T _C = +150°C	-	-	500	μА
t _{RR}	$I_F = 1A$, $dI_F/dt = 200A/\mu s$	-	-	70	ns
	$I_F = 6A$, $dI_F/dt = 200A/\mu s$	-	-	90	ns
t _A	$I_F = 6A$, $dI_F/dt = 200A/\mu s$	-	45	-	ns
t _B	$I_F = 6A$, $dI_F/dt = 200A/\mu s$	-	30	-	ns
Q _{RR}	$I_F = 6A$, $dI_F/dt = 200A/\mu s$	-	400	-	nC
CJ	V _R = 10V, I _F = 0A	-	22	-	pF
$R_{ heta JC}$		-	-	3	°C/W

DEFINITIONS

 V_F = Instantaneous forward voltage (pw = 300 μ s, D = 2%).

I_R = Instantaneous reverse current.

 t_{RR} = Reverse recovery time (See Figure 2), summation of $t_A + t_B$.

 t_A = Time to reach peak reverse current (See Figure 2).

t_B = Time from peak I_{RM} to projected zero crossing of I_{RM} based on a straight line from peak I_{RM} through 25% of I_{RM} (See Figure 2).

Q_{RR} = Reverse recovery charge.

 C_J = Junction Capacitance.

 $R_{\theta JC}$ = Thermal resistance junction to case.

 $\mathsf{E}_{\mathsf{AVL}}$ = Controlled Avalanche Energy (See Figures 10 and 11).

pw = pulse width.

D = duty cycle.

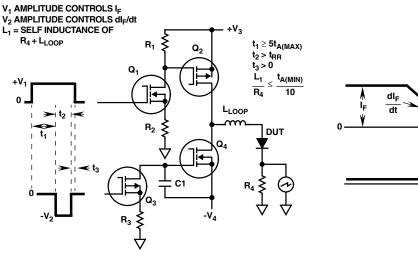


FIGURE 1. t_{RR} TEST CIRCUIT

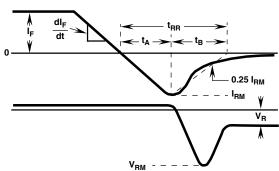
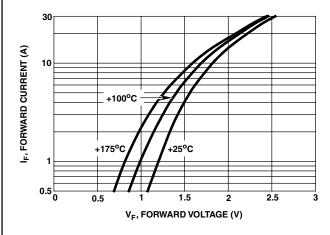



FIGURE 2. t_{RR} WAVEFORMS AND DEFINITIONS

Typical Performance Curves

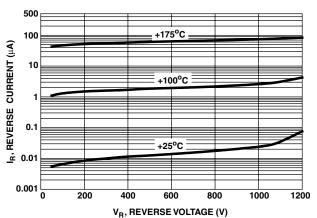
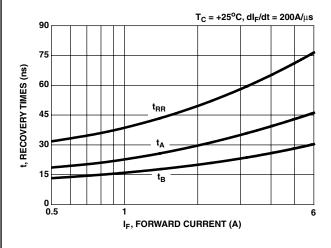



FIGURE 3. TYPICAL FORWARD CURRENT vs FORWARD VOLTAGE DROP

FIGURE 4. TYPICAL REVERSE CURRENT vs REVERSE VOLTAGE

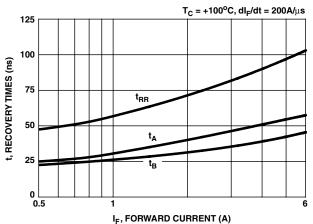
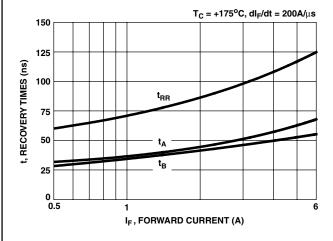



FIGURE 5. TYPICAL t_{RR} , t_{A} AND t_{B} CURVES vs FORWARD CURRENT AT +25°C

FIGURE 6. TYPICAL t_{RR} , t_{A} AND t_{B} CURVES vs FORWARD CURRENT AT +100°C

Typical Performance Curves (Continued)

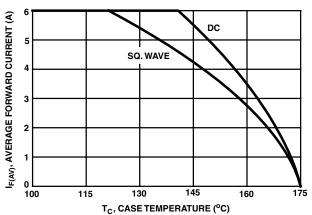


FIGURE 7. TYPICAL t_{RR} , t_{A} AND t_{B} CURVES vs FORWARD CURRENT AT +175°C

FIGURE 8. CURRENT DERATING CURVE

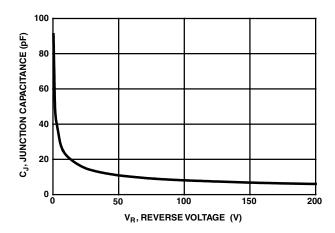
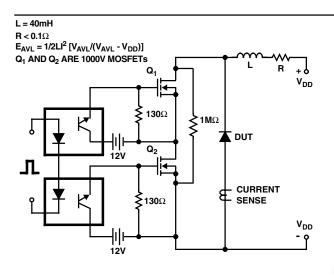



FIGURE 9. TYPICAL JUNCTION CAPACITANCE vs REVERSE VOLTAGE

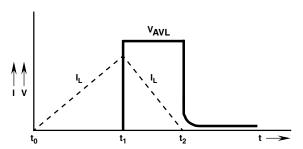
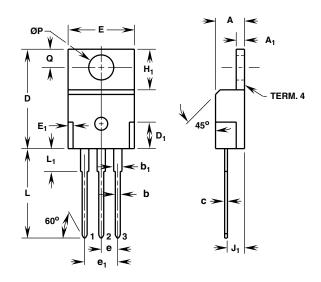



FIGURE 10. AVALANCHE ENERGY TEST CIRCUIT

FIGURE 11. AVALANCHE CURRENT AND VOLTAGE WAVE-FORMS

Plastic Packages

LEAD 1. ANODE 1

LEAD 2. CATHODE

LEAD 3. ANODE 2

TERM. 4. CATHODE

TO-220AB 3 LEAD JEDEC TO-220AB PLASTIC PACKAGE

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.170	0.180	4.32	4.57	-
A ₁	0.048	0.052	1.22	1.32	-
b	0.030	0.034	0.77	0.86	3, 4
b ₁	0.045	0.055	1.15	1.39	2, 3
С	0.014	0.019	0.36	0.48	2, 3, 4
D	0.590	0.610	14.99	15.49	-
D ₁	-	0.160	-	4.06	-
E	0.395	0.410	10.04	10.41	-
E ₁	-	0.030	-	0.76	-
е	0.100	TYP	2.54	TYP	5
e ₁	0.200 BSC		5.08	BSC	5
H ₁	0.235	0.255	5.97	6.47	-
J ₁	0.100	0.110	2.54	2.79	6
L	0.530	0.550	13.47	13.97	-
L ₁	0.130	0.150	3.31	3.81	2
ØP	0.149	0.153	3.79	3.88	-
Q	0.102	0.112	2.60	2.84	-

NOTES:

- These dimensions are within allowable dimensions of Rev. J of JEDEC TO-220AB outline dated 3-24-87.
- 2. Lead dimension and finish uncontrolled in L_1 .
- 3. Lead dimension (without solder).
- 4. Add typically 0.002 inches (0.05mm) for solder coating.
- 5. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimension D.
- 6. Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimension D.
- 7. Controlling dimension: Inch.
- 8. Revision 1 dated 1-93.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$	FAST®	PACMAN™	SuperSOT™-3
Bottomless™	FASTr™	POP^{TM}	SuperSOT™-6
CoolFET™	GlobalOptoisolator™	PowerTrench ®	SuperSOT™-8
CROSSVOLT TM	GTO™ .	QFET™	SyncFET™
DenseTrench™	HiSeC™	QS™	TinyLogic™
DOME™	ISOPLANAR™	QT Optoelectronics™	UHC TM
EcoSPARK™	LittleFET™	Quiet Series™	UltraFET™
E ² CMOS TM	MicroFET™	SILENT SWITCHER ®	VCX^{TM}
EnSigna™	MICROWIRE™	SMART START™	

FACT Quiet SeriesTM OPTOPLANARTM Star* PowerTM
Star* PowerTM
StealthTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.