

Surface Mount Tristate VCXOs, 3.3V

Surface mount VCXOs with tristate are available for the first time at 3.3 volts, and in a variety of off-the-shelf models. They are recommended for new wireless and telecom designs that operate at 3.3 volt to minimize current, power, and heat dissipation. Three combinations of pull, control voltage and center frequency deviation accommodate a wide variety of filtering and driving circuitry. For greater pull, the 5V VCXOs should be used.

These VCXOs have excellent linearity. This permits advanced phase locked loops which demand the tight control of frequency-to-voltage sensitivity ($\Delta f/\Delta V$), over full deviation and temperature ranges.

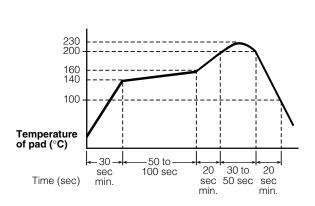
The multi-layer gold-ceramic package ushers in a new generation of surface mount oscillators. Measuring only 5.2 x 7.7 x 1.9 mm, they significantly reduce PCB real estate, reducing cost and saving space which can be used for adding value-functions.

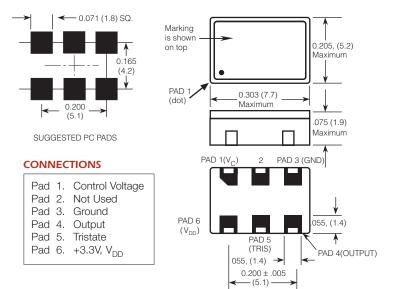
Tristate enhances automatic board testing, and allows several VCXOs to be wire-or'd, so that a choice of more than one oscillator frequency can easily be made.

SMD Tristate 3.3V, VCXO

3 MHz to 55 MHz

These 3.3V SMD VCXOs generate an HCMOS frequency output which is controlled by the input control voltage. The end-point frequency/voltage parameters and the center frequency voltage range are defined in the specifications.


Frequency Deviation = deviation of frequency from the nominal frequency.


CAPTURE RANGE

The Frequency-Capture range is equal to the (Nominal Center-Frequency \pm Frequency Deviation), because every MF VCXO is ATE-tested to meet the Frequency-Deviation over the temperature range. **Frequency Capture specification includes all effects of temperature and supply voltage.** It is not necessary to make additional capture allowances.

FEATURES

- Small size VCXO: 5.2 x 7.7 x 1.9 mm
- Frequency from 3 MHz to 50 MHz
- 50 ppm and 75 ppm guaranteed pull ranges
- Start-up time less than 5 ms.
- Typical jitter is 8.3 ps RMS
- Excellent linearity
- Every VCXO is tested over temperature range 0 to 70°C
- Tristate with "0" input on pad 5

Millimeters are shown in ().

"R-1" Package

Recommended Reflow Soldering Profile

VOLTAGE CONTROLLED OSCILLATORS HCMOS, 0° TO 70°C SMD, Tristate 3.3V

3 MHz to 55 MHz

Center Frequency is Between Two Voltages with ±50 ppm stability

MODEL	Marking Letter ID	Control Voltage (Volts)	Guaranteed Frequency Deviation (ppm)	Control Capture Range (ppm)	Center Voltage at Center Frequency	Frequency Stability (ppm)
R3306	VW	0 to 3.0	± 50 min	± 50	-	± 30, typ

Center Frequency is at 1.5V with ±50 ppm stability

MODEL	Marking Letter ID	Control Voltage (Volts)	Frequency Deviation (ppm)	Guaranteed Capture Range (ppm)	Control Voltage at Center Frequency	Center Frequency Stability (ppm)
R3320	VX	0.5 to 2.5	± 50 to 150	± 50	1.5	± 30, typ

Center Frequency is at 1.5V with ±25 ppm stability

MODEL	Marking Letter ID	Control Voltage (Volts)	Frequency Deviation (ppm)	Guaranteed Capture Range (ppm)	Control Voltage at Center Frequency	Center Frequency Stability (ppm)
R3330	VY	0.5 to 2.5	± 50 to 150	± 50	1.5	± 15, typ

DESCRIPTIONS

R3306	±50 ppm, min. deviation when using 0 to 3.0V rail-to-rail control-voltage
R3320	±50 ppm capture when using using 0.5 to 2.5V control-voltage and 1.5V center with ±50 ppm stability
R3330	±50 ppm capture when using using 0.5 to 2.5V control-voltage and 1.5V center with ±25 ppm stability

FREQUENCY STABILITY

Frequency stability vs. Temperature (0 to 70° C) is typically better than ± 20 ppm. Since the deviation of each oscillator is tested and guaranteed over the whole operating temperature range, it is not necessary to make additional capture allowances. All oscillators will capture frequencies with the full minimum values of the deviation under all conditions.

QUALITY

Each VCXO is computer-tested at three temperatures to guarantee full compliance to the specification.

SPECIFICATIONS

Temperature

Operating 0 to 70°C Storage -55 to +125°C

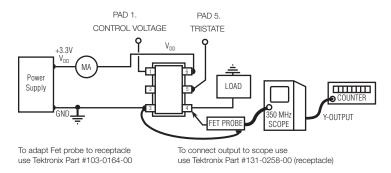
Frequency Stability

±15, 30 or 50 ppm, max.

Input Voltage, V _{DD}	MIN. 3.0	TYP 3.3	MAX 3.6	UNITS volts
Input Current 3 M to 10 MHz 10.1 to 20 MHz 20.1 to 30 MHz 30.1 MHz and above		2.0 3.0 5.0 7.0	3.5 4.0 6.0 8.0	ma ma ma ma
Output Levels "0" Level, sinking 16 ma "1" Level CMOS, sourcing 8 ma	V _{DD} 4		0.4	volts
Rise and Fall Times CMOS, 15 pf, 20 to 80% CMOS, 30 pf, 20 to 80%) CMOS, 50 pf, 20 to 80%)		3.0 4.0 6.0	4 5 8	ns ns ns
Symmetry CMOS, @ 50% V _{DD}		48/52	45/55	percent
Input Impedance, Pad 1, Control Voltage	100	1000		Kohms

Tristate

"1" Output is On - Pin 5 may float or 2.4V min, sourcing 400µa


"0" Output is disabled, tristate, high impedance -Pin 5 requires 0.4V, sinking 400µa

Control Voltage Bandwidth 15 75 KHz

AGING

3 ppm, first year, typ.

1 ppm per year thereafter, typ.

TEST CIRCUIT

TE ELECTRONICS

SMD, Tristate 3.3V

3 MHz to 55 MHz

PACKAGING AND ENVIRONMENTAL INFORMATION

SURFACE MOUNT "R"

R packages are hermetically sealed metal-ceramic packages. For hand-soldering, the temperature of the iron should not exceed 400°C.

ENVIRONMENTAL SPECIFICATIONS

Temperature Cycle – Not to exceed ±5 ppm change when exposed to 2 hours maximum at each temperature from 0 to 120°C, with 25°C reference

 $\label{eq:shock-1000} \textbf{Shock} - 1000~\text{G's, 0.35 ms, 1/2 sine wave, 3 shocks in each plane} \\ \textbf{Vibration} - 10\text{-}2000~\text{Hz of .06" d.a. or 20 G's, whichever is less} \\ \\$

Humidity - Resistant to 85° R.H. at 85°C

TAPE AND REEL

Tape and Reel- 16mm, EIA compliant

MECHANICAL, SPECIFICATIONS

Gross Leak

Each unit checked in 125°C flurocarbon

Case

Ceramic with metal lid

Pads

60 microinch of gold over nickel

Marking

Print is permanent black ink.

Resistance to Solvents

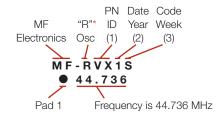
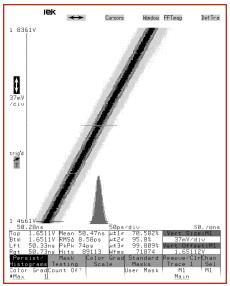

MIL STD 202, Method 215

TABLE 1

	Marking Letter
Model	ID
R3306	VW
R3320	VX
R3330	VY

MARKING SPECIFICATION

The format for the marking is:



NOTES

- (1) One or two letters are used to identify the model. See Table 1.
- (2) Number in date code is year. In example, "1" is 2001.
- (3) Letter in date code is one two-week period. Year is divided into
 - 26 two-week intervals. Each two-week interval is represented by one letter of the alphabet, in sequence.
- * When Marking Letter ID is two letters, the "R" is deleted.

SMD, Tristate 3.3V

3 MHz to 55 MHz

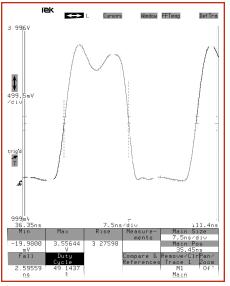


Fig. 2 R3320–19.44M with 25 pf load

DEVIATION vs CONTROL VOLTAGE FOR R3330-27M, TYPICAL

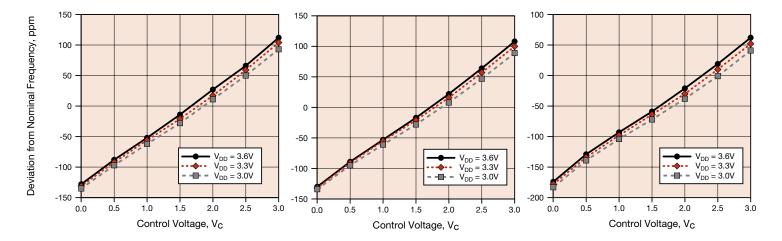
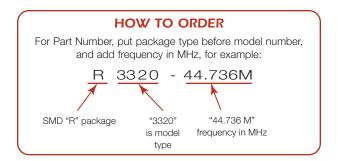



Fig. 3 Deviation vs. Control Voltage at 0°C

Fig. 4 Deviation vs. Control Voltage at 25°C

Fig. 5 Deviation vs. Control Voltage at 70°C

MF ELECTRONICS