

- Very Low Series Resistance
- Quartz Stability
- Surface-Mount, Solder Seal Package with 4.8 x 5.2 mm Footprint

The RO2180B is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic case. It provides reliable, fundamental-mode, quartz frequency stabilization.

RO2180B

433.92 MHz SAW Resonator

SM5248-8 Case

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation	+0	dBm
DC Voltage Between Terminals (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	°C
Soldering Temperature	+250	°C

Electrical Characteristics

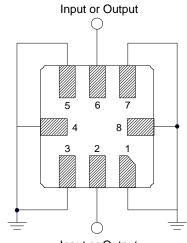
Cl	naracteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Frequency (+25 °C)	quency (+25 °C) Nominal Frequency f_C 2, 3, 4, 5	433.845	433.92	433.995	MHz		
	Tolerance from 433.92 MHz	Df _C	2, 3, 4, 3			±75	kHz
Insertion Loss		IL	2, 5, 6		2		dB
Quality Factor	Unloaded Q	Q _U	Q _U 5, 6, 7		11,535		
	50 Ω Loaded Q	Q_L			1,811		
Temperature Stability	Turnover Temperature	e T _O			25		°C
	Turnover Frequency	f _O	6, 7, 8		f _{C+} 16		
	Frequency Temperature Coefficient	FTC			0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	fA	1		≤10		ppm/yr
DC Insulation Resistance between Any Two Terminals			5	1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R_{M}			18.63		Ω
	Motional Inductance	L _M	5, 6, 7, 9		78.79		μH
	Motional Capacitance	C _M			1.71		fF
	Shunt Static Capacitance	Co	5, 6, 7, 9		1.82		pF
Test Fixture Shunt Inductance		L _{TEST}	2, 7		63.13		nH
Lid Symbolization (in Addition to Lot and/or Date Code)					295	•	

(7)

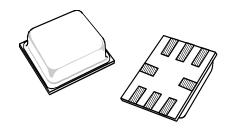
CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. Notes:

- Frequency aging is the change in f_C with time and is specified at +65°C or less.
 Aging may exceed the specification for prolonged temperatures above +65°C.

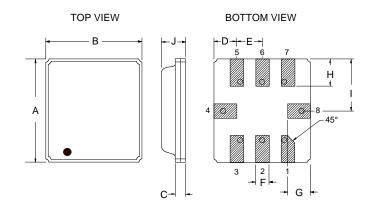
 Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The frequency, f_C , is measured at the minimum insertion loss point, IL_{MIN} , with the resonator in the 50 Ω test system (VSWR \leq 1.2:1). The shunt inductance, L_{TEST} , is tuned for parallel resonance with C_O at f_C . Typically, $f_{OSCILLATOR}$ or $f_{TRANSMITTER}$ is approximately equal to the resonator f_C .
- One or more of the following United States patents apply: 4,454,488 and 4,616,197.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 5. Unless noted otherwise, case temperature $T_C = +25$ °C±5°C.
- 6. The design, manufacturing process, and specifications of this device are subject to change without notice.


- 7. Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_O .
- Turnover temperature, T_O, is the temperature of maximum (or turnover) frequency, f_O. The nominal frequency at any case temperature, T_C, may be calculated from: f = f_O [1 FTC (T_O -T_C)²]. Typically, oscillator T_O is approximately equal to the specified resonator T_O.
- 7. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the static (nonmotional) capacitance between the two terminals measured at low frequency (10 MHz) with a capacitance meter. The measurement includes parasitic capacitance with "NC" pads unconnected. Case parasitic capacitance is approximately 0.05 pF. Transducer parallel capacitance can be calculated as: $C_P \approx C_0 0.05$ pF.

Electrical Connections


This one-port, eight-terminal solder seal resonator is bidirectional. However, impedances and circuit board parasitics may not be symmetrical, requiring slightly different oscillator component-matching values.

Pin	Connection	
1	Ground	
2	Input or Output	
3	Ground	
4	Ground	
5	Ground	
6	Output or Input	
7	Ground	
8	Ground	


Typical Circuit

Input or Output
1, 3, 4, 5, 7, 8 No Internal Connection

Case Design

	Nominal	
Dimensions	Millimeters	Inches
Α	5.18	.204
В	4.8	.189
С	0.508	.020
D	1.14	.045
E	1.27	.050
F	0.71	.028
G	1.12	.044
Н	1.37	.054
I	2.59	.102
J	1.78	0.070