5.0 Volt, PECL, 1300nM LED for Multimode Optical Fiber at up to 200MBaud ### ORDERING INFORMATION | Application | Description | Part Number | |-------------------------------|-----------------------------------|-------------| | Fast Ethernet
ESCON
ATM | 100Base-FX
X3.296-1997
OC-3 | R14G-LP01 | ### **BLOCK DIAGRAM** #### **FEATURES** - Four RJ style optical transceivers in a single component - Optimized for 62.5 or 50/125µ multimode optical fiber - Compatible with solder and aqueous wash processes - Enables reuse of exisitng RJ-45 UTP equipment cabinets - Overall metal shield with enhanced grounding tabs - Full compliance to the IEEE, ANSI and ATM requirements - Duplex multimode LC receptacle at each port - Differential PECL inputs and outputs - Single +5.0 V power supply per port #### **APPLICATIONS** The R14G-LP01 multimode glass optical fiber transceivers provide low profile, cost effective solutions for high datarate multimode (up to 200 Megabaud, up to 2 Km) optical fiber data links with four duplex LC connector interfaces. These transceivers are fully compliant with the IEEE, ATM and ANSI standards but can be used for any other data communications purpose within their operating parameters. #### **DESCRIPTION** The R14G-LP01 fiber optic transceivers consist of transmitter and receiver functions combined in a four port RJ Format "harmonica" module. The optical transmitters are high ouput 1300nM LED's. The transmitter input lines are driven with differential PECL signals applied to the Transmit (TX+ and TX-) pins. These signals are internally converted to a suitable modulation current by a CMOS integrated circuit. The optical receivers consist of PIN and Preamplifier assemblies and CMOS limiting post-amplifier integrated circuits. Outputs from the receivers consist of differential PECL data signals on the Receive (RX+ and RX-) pins and single ended PECL signal detect functions on the Signal Detect (SD) pins. 5.0 Volt, PECL, 1300nM LED for Multimode Optical Fiber at up to 200MBaud ### **ABSOLUTE MAXIMUM RATINGS** Absolute maximum limits mean that no catastrophic damage will occur if the product is subjected to these ratings for short periods, provided each limiting parameter is in isolation and all other parameters have values within the performance specification. It should not be assumed that limiting values of more than one parameter can be applied to the product at the same time. | Parameter | Symbol | Minimum | Typical | Maximum | Unit | |----------------------------------|-------------------|---------|---------|----------|---------| | Storage Temperature | T _s | -55 | | +100 | ° C | | Lead Soldering Temperature | T _{SOLD} | | | +260 | ° C | | Lead Soldering Time | t _{sold} | | | 10 | Seconds | | Supply Voltage | V _{cc} | -0.5 | | 6.0 | V | | Data Input Voltage | V _I | -0.5 | | V_{cc} | V | | Differential Input Voltage (p-p) | V _D | | | 2.0 | V | | Output Current | I _o | | | 50 | mA | #### RECOMMENDED OPERATING CONDITIONS | Parameter | Symbol | Minimum | Typical | Maximum | Unit | |-----------------------------------|-----------------------------------|---------|---------|---------|------| | Operating Temp. Limit - R14G-LP11 | T _A | 0 | | +70 | ° C | | Supply Voltage | V _{cc} | 4.75 | | 5.25 | V | | Data Input Voltage - Low | V _{IL} - V _{CC} | -1.810 | | -1.475 | V | | Data Input Voltage - High | V _{IH} - V _{CC} | -1.165 | | -0.880 | V | | Data Output Load | R _L | | 50 | | Ohms | | Differential Input Voltage (p-p) | V _D | 0.800 | | | V | 5.0 Volt, PECL, 1300nM LED for Multimode Optical Fiber at up to 200MBaud ### **TRANSMITTERS** | Parameter | Symbol | Minimum | Typical | Maximum | Unit | |-----------------------------|------------------|---------|---------|---------|-------| | Baud Rate | | 10 | | 200 | MBaud | | Optical Output Power | P _o | -19 | | -14 | dBm | | Optical Output Wavelength | λ_{OUT} | 1270 | 1320 | 1380 | nm | | Extinction Ratio | ER | | -47 | -40 | dB | | Optical Rise Time (10%-90%) | t _R | 0.6 | 1.5 | 3.0 | nS | | Optical Fall Time (10%-90%) | t _F | 0.6 | 2.0 | 3.0 | nS | | Duty Cycle Distortion | t _{DCD} | | <0.1 | 0.6 | nS | | Data Dependent Jitter | t _{DDJ} | | <0.1 | 0.7 | nS | ### **RECEIVERS** | Parameter | Symbol | Minimum | Typical | Maximum | Unit | |-----------------------------|------------------|---------|---------|---------|-------| | Baud Rate | | 10 | | 200 | MBaud | | Optical Wavelength | λ_{IN} | 1270 | | 1380 | nm | | Optical Sensitivity | P _i | | -35 | -32 | dBm | | Input Duty Cycle Distortion | t _{DCD} | | | 1.0 | nS | | Input Data Dependent Jitter | t _{DDJ} | | | 0.76 | nS | | Signal Detect Assert Time | | | <10 | 100 | μS | | Signal Detect Deassert Time | | | <10 | 350 | μS | ### **REGULATORY COMPLIANCE** | Requirement | Feature | Condition | Notes | |-----------------------|------------|------------------|---------| | MIL-STD-883-3015.7 | ESD | Class II | 2200V | | IEC-801-2 | ESD | Human Body Model | 25KV | | IEC-801-3 | EMI | Immunity | >20dB | | FCC | EMI | Class B | 10V / M | | EN 55022 (CISPR 22A) | EMI | Class B | >20dB | | IEC-825 issue 1993-11 | Eye Safety | Class 1 | | UL / CSA File Number: E209124 TUV File Number: R2071012 5.0 Volt, PECL, 1300nM LED for Multimode Optical Fiber at up to 200MBaud ### PIN NUMBER ASSIGNMENTS **Bottom View of Component** ### RECOMMENDED PCB HOLE LAYOUT 5.0 Volt, PECL, 1300nM LED for Multimode Optical Fiber at up to 200MBaud ### **PIN FUNCTIONS** | Pin Number | Symbol | Description | Logic Family | |----------------|--------|--|--------------| | GP | GP | Grounding Post
Connect to Chassis Ground | N/A | | 1, 11, 21, 31 | TD+ | Transmitter DATA In | PECL | | 2, 12, 22, 32 | VEETX | Transmitter Signal Ground | N/A | | 3, 13, 23, 33 | TD- | Transmitter DATA In | PECL | | 4, 14, 24, 34 | VCCTX | Transmitter Power Supply | N/A | | 5, 15, 25, 35 | SD | Signal Detect Normal Operation: Logic "1" Output Fault Condition: Logic "0" Output | PECL | | 6, 16, 26, 36 | N/C | No Connection | N/A | | 7, 17, 27, 37 | RD- | Receiver DATA Out | PECL | | 8, 18, 28, 38 | VCCRX | Receiver Power Supply | N/A | | 9, 19, 29, 39 | RD+ | Receiver DATA Out | PECL | | 10, 20, 30, 40 | VEERX | Receiver Signal Ground | N/A | # TRANSCEIVER APPLICATION SCHEMATIC For Interface To +5.0V PECL Circuits TRANSCEIVER PHY CIRCUIT L1, L2 = 1mH to 4.7mH* C1, C2, C6 = 10nF** C3, C4, C5 = 4.7mF to 10mF** * Or ferrite bead alternative ** MLC capacitors ### TRANSCEIVER OUTLINE DRAWING Dimensions Shown As: $\frac{mm}{inches}$ ### IMPORTANT NOTICE Methode Electronics reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance. Methode advises its customers to obtain the latest version of the publications to verify, before placing orders, that the information being relied on is current. Methode Electronics warrants performance of its optical link products to current specifications in accordance with Methode Electronics standard warranty. Testing and other quality control techniques are utilized to the extent that Methode Electronics has determined it to be necessary to support this warranty. Specific testing of all parameters of each optical link product is not necessarily performed on all optical link products. Methode Electronic products are not designed for use in life support appliances, devices, or systems where malfunction of a Methode Electronics product can reasonably be expected to result in a personal injury. Methode Electronics customers using or selling optical link products for use in such applications do so at their own risk and agree to fully indemnify Methode Electronics for any damages resulting from such improper use or sale. Methode Electronic assumes no liability for Methode Electronics assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does Methode Electronics warrant or represent that a license, either expressed or implied is granted under any patent right, copyright, or intellectual property right, and makes no representations or warranties that these products are free from patent, copyright, or intellectual property rights. Applications that are described herein for any of the optical link products are for illustrative purposes only. Methode Electronics makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.