

PHOTOCOUPLER

PS2581AL1,PS2581AL2

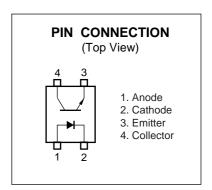
LONG CREEPAGE HIGH ISOLATION VOLTAGE 4-PIN PHOTOCOUPLER

-NEPOC Series-

DESCRIPTION

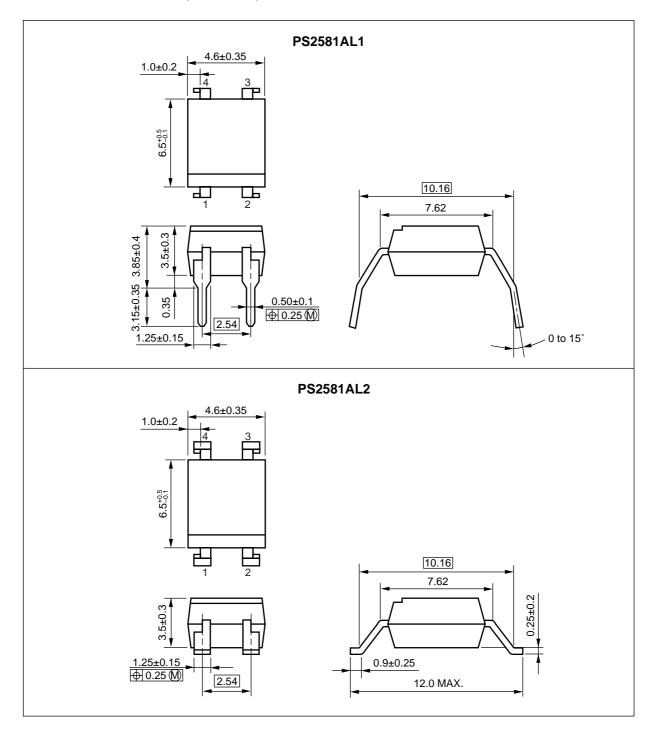
★ The PS2581AL1, PS2581AL2 are optically coupled isolators containing a GaAs light emitting diode and an NPN silicon phototransistor in a plastic DIP (Dual In-line Package) to realize an excellent cost performance.

Creepage distance and clearance of leads are over 8 millimeters.


The PS2581AL2 is lead bending type (Gull-wing) for surface mounting.

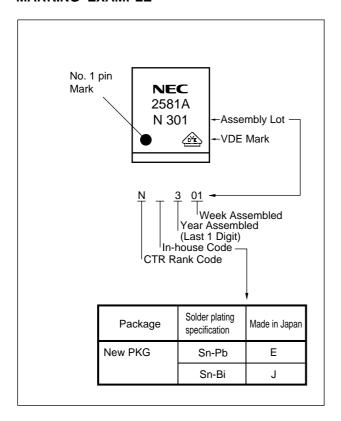
FEATURES

- ★ Lead-free product : Solder plating specification Sn-Bi
 - · Long creepage and clearance distance (8 mm)
 - High isolation voltage (BV = 5 000 Vr.m.s.)
 - High-speed switching ($t_r = 5 \mu s$ TYP., $t_f = 7 \mu s$ TYP.)
 - UL, BSI, CSA, NEMKO, DEMKO, SEMKO, FIMKO approved
- ★ DIN EN60747-5-2 (VDE0884 Part2) approved


APPLICATIONS

- Power supply
- Telephone/FAX.
- FA/OA equipment
- · Programmable logic controller

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices representative for availability and additional information.


PACKAGE DIMENSIONS (UNIT: mm)

PHOTOCOUPLER CONSTRUCTION

Parameter	Unit (MIN.)		
Air Distance	8 mm		
Outer Creepage Distance	8 mm		
Inner Creepage Distance	4 mm		
Isolation Thickness	0.4 mm		

★ MARKING EXAMPLE

★ ORDERING INFORMATION

Part Number	Package	Packing Style	Safety Standard Approval	Solder plating Specification	Application Part Number ^{⁴1}
PS2581AL1	4-pin DIP	Magazine case 100 pcs	Standard products	Sn-Pb	PS2581AL1
PS2581AL2			(UL, CSA, BSI, NEMKO,		PS2581AL2
PS2581AL2-E3		Embossed Tape 1 000 pcs/reel	SEMKO, DEMKO, FIMKO,		
PS2581AL2-E4			DIN EN60747-5-2		
PS2581AL1-A		Magazine case 100 pcs	(VDE0884 Part2)	Sn-Bi	PS2581AL1
PS2581AL2-A			Approved products)		PS2581AL2
PS2581AL2-E3-A		Embossed Tape 1 000 pcs/reel			
PS2581AL2-E4-A					

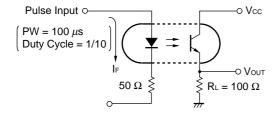
^{*1} For the application of the Safety Standard, following part number should be used.

ABSOLUTE MAXIMUM RATINGS (TA = 25°C, unless otherwise specified)

Parameter		Symbol	Ratings	Unit
Diode	Reverse Voltage	VR	6	V
	Forward Current (DC)	lF	30	mA
	Power Dissipation Derating	⊿P _D /°C	1.5	mW/°C
	Power Dissipation	Po	150	mW
	Peak Forward Current ^{⁴1}	I FP	0.5	Α
Transistor	Collector to Emitter Voltage	VCEO	70	V
Emitter to Collector Voltage		VECO	5	V
	Collector Current		30	mA
	Power Dissipation Delay	⊿Pc/°C	1.5	mW/°C
	Power Dissipation	Pc	150	mW
Isolation Voltage ^{'2}		BV	5 000	Vr.m.s.
Operating Ambient Temperature		TA	-55 to +100	°C
Storage Temperature		T _{stg}	-55 to +150	°C

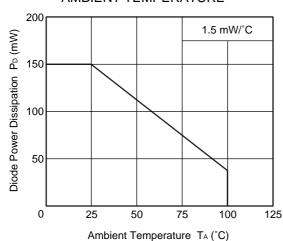
^{*1} PW = 100 μ s, Duty Cycle = 1%

^{*2} AC voltage for 1 minute at $T_A = 25^{\circ}C$, RH = 60% between input and output

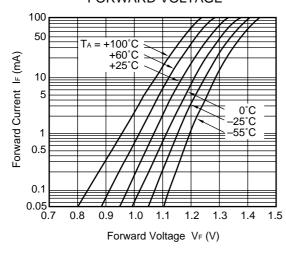

ELECTRICAL CHARACTERISTICS (TA = 25°C)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Diode	Forward Voltage	VF	IF = 10 mA		1.2	1.4	V
	Reverse Current	lr	V _R = 5 V			5	μΑ
	Terminal Capacitance	Ct	V = 0 V, f = 1.0 MHz		10		pF
Transistor	Collector to Emitter Dark Current	ICEO	VcE = 70 V, IF = 0 mA			100	nA
Coupled	Current Transfer Ratio	CTR	IF = 5 mA, VcE = 5 V	50		300	%
	Collector Saturation Voltage	VCE (sat)	I _F = 10 mA, I _C = 2 mA		0.13	0.3	V
	Isolation Resistance	R _{I-O}	Vi-o = 1.0 kVpc	10 ¹¹			Ω
	Isolation Capacitance	C _{I-O}	V = 0 V, f = 1.0 MHz		0.4		pF
	Rise Time ^{*2}	tr	Vcc = 10 V, Ic = 2 mA, R _L = 100 Ω		5		μs
	Fall Time ^{*2}	tf			7		

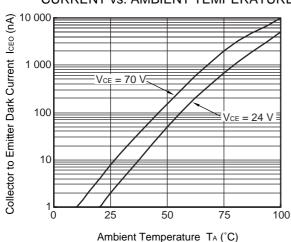
*1 CTR rank


N : 50 to 300 (%) H : 80 to 160 (%) Q : 100 to 200 (%) W : 130 to 260 (%)

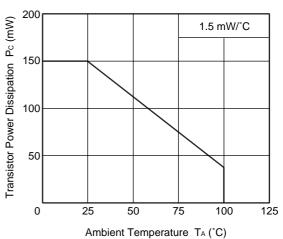
*2 Test circuit for switching time



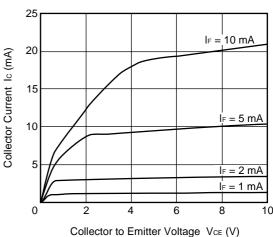
TYPICAL CHARACTERISTICS (TA = 25°C, unless otherwise specified)


DIODE POWER DISSIPATION vs. AMBIENT TEMPERATURE

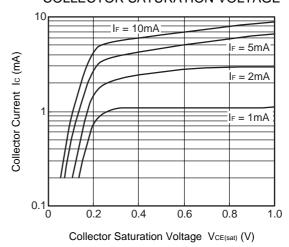
FORWARD CURRENT vs. FORWARD VOLTAGE

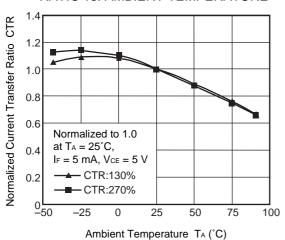


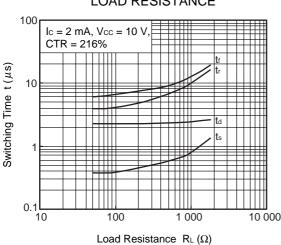
COLLECTOR TO EMITTER DARK CURRENT vs. AMBIENT TEMPERATURE



Remark The graphs indicate nominal characteristics.

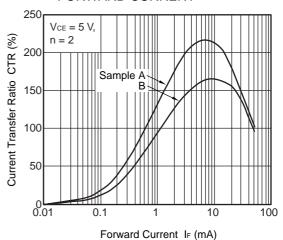

TRANSISTOR POWER DISSIPATION vs. AMBIENT TEMPERATURE


COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE

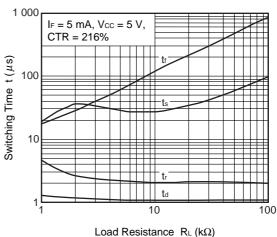

COLLECTOR CURRENT vs. COLLECTOR SATURATION VOLTAGE

NORMALIZED CURRENT TRANSFER RATIO vs. AMBIENT TEMPERATURE

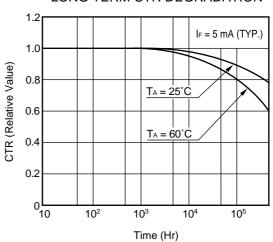
SWITCHING TIME vs. LOAD RESISTANCE



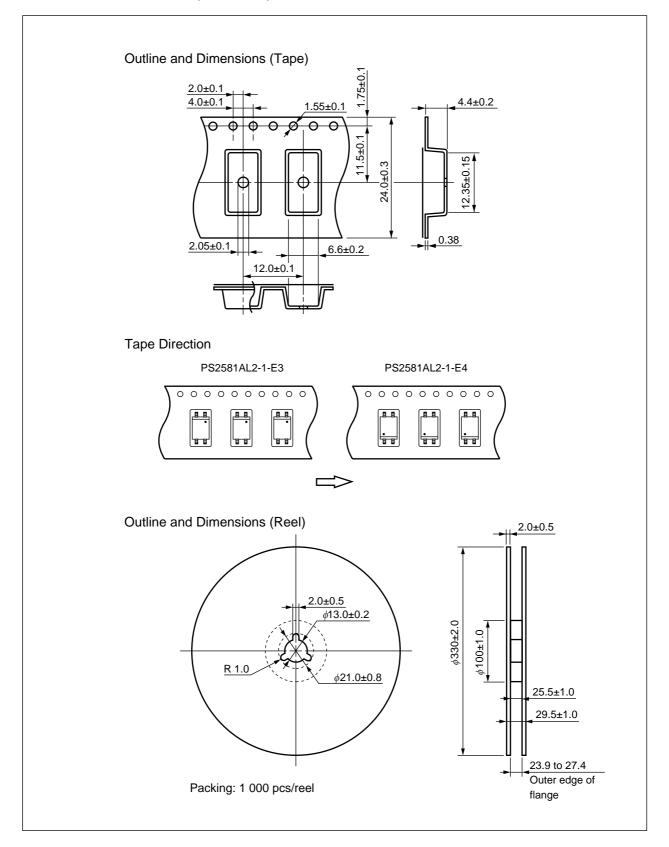
FREQUENCY RESPONSE


Remark The graphs indicate nominal characteristics.

CURRENT TRANSFER RATIO vs. FORWARD CURRENT



Tornara Garrone ii (iii)


SWITCHING TIME vs. LOAD RESISTANCE

LONG TERM CTR DEGRADATION

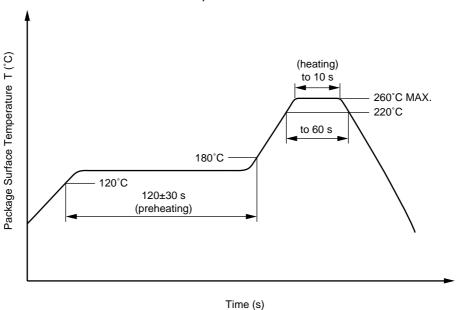
TAPING SPECIFICATIONS (UNIT: mm)

NOTES ON HANDLING

1. Recommended soldering conditions

(1) Infrared reflow soldering

• Peak reflow temperature 260°C or below (package surface temperature)


Time of peak reflow temperature
 Time of temperature higher than 220°C
 60 seconds or less

Time to preheat temperature from 120 to 180°C 120±30 s
 Number of reflows Three

• Flux Rosin flux containing small amount of chlorine (The flux with a

maximum chlorine content of 0.2 Wt% is recommended.)

Recommended Temperature Profile of Infrared Reflow

(2) Wave soldering

• Temperature 260°C or below (molten solder temperature)

• Time 10 seconds or less

• Preheating conditions 120°C or below (package surface temperature)

Number of times
 One (Allowed to be dipped in solder including plastic mold portion.)

Flux
 Rosin flux containing small amount of chlorine (The flux with a maximum chlorine

content of 0.2 Wt% is recommended.)

★ (3) Soldering by soldering iron

Peak temperature (lead part temperature) 350°C or below
 Time (each pins) 3 seconds or less

• Flux Rosin flux containing small amount of chlorine (The flux with a

maximum chlorine content of 0.2 Wt% is recommended.)

(a) Soldering of leads should be made at the point 1.5 to 2.0 mm from the root of the lead.

(b) Please be sure that the temperature of the package would not be heated over 100°C.

(4) Cautions

• Fluxes

Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

★ 2. Cautions regarding noise

Be aware that when voltage is applied suddenly between the photocoupler's input and output or between collector-emitters at startup, the output side may enter the on state, even if the voltage is within the absolute maximum ratings.

USAGE CAUTIONS

- 1. Protect against static electricity when handling.
- **2.** Avoid storage at a high temperature and high humidity.

10

- The information in this document is current as of May, 2004. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
 books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
 and/or types are available in every country. Please check with an NEC sales representative for
 availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4-0110

Caution

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
 - Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.

▶ For further information, please contact

NEC Compound Semiconductor Devices, Ltd. http://www.ncsd.necel.com/

E-mail: salesinfo@ml.ncsd.necel.com (sales and general) techinfo@ml.ncsd.necel.com (technical)

5th Sales Group, Sales Division TEL: +81-44-435-1588 FAX: +81-44-435-1579

NEC Compound Semiconductor Devices Hong Kong Limited

E-mail: ncsd-hk@elhk.nec.com.hk (sales, technical and general)

Hong Kong Head Office TEL: +852-3107-7303 FAX: +852-3107-7309
Taipei Branch Office TEL: +886-2-8712-0478 FAX: +886-2-2545-3859
Korea Branch Office TEL: +82-2-558-2120 FAX: +82-2-558-5209

NEC Electronics (Europe) GmbH http://www.ee.nec.de/

TEL: +49-211-6503-0 FAX: +49-211-6503-1327

California Eastern Laboratories, Inc. http://www.cel.com/

TEL: +1-408-988-3500 FAX: +1-408-988-0279