PI74AVC+16841 ## 2.5V 20-Bit Bus Interface D-Type Latch with 3-State Outputs ### **Product Features** - PI74AVC⁺16841 is designed for low voltage operation, $V_{CC} = 1.65 \text{V to } 3.6 \text{V}$ - True ±24mA Balanced Drive @ 3.3V - I_{OFF} supports partial power-down operation - 3.6V I/O Tolerant Inputs and Outputs - All outputs contain noise reduction circuitry reducing noise without speed degradation - Industrial operation at -40°C to +85°C - Available Packages: - -56-pin 240 mil wide plastic TSSOP (A) - 56-pin 173 mil wide plastic TVSOP (K) ## Logic Block Diagram ## **Product Description** Pericom Semiconductor's PI74AVC⁺ series of logic circuits are produced using the Company's advanced sub-micron CMOS technology, achieving industry leading speed. The PI74AVC⁺16841, a 20-bit bus-interface D-type latch, is designed for 1.65V to 3.6V V_{CC} operation. The device features 3-State outputs designed specifically for driving highly capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, unidirectional bus drivers, and working registers. The device can be used as two 10-bit latches or one 20-bit latch (transparent D-type). The device has non-inverting Data (D) inputs and provides true data at its outputs. While the Latch Enable (1LE or 2LE) input is HIGH, the Q outputs of the corresponding 10-bit latch follow the D inputs. When LE is taken LOW, the Q outputs are latched at the levels set up at the D inputs. A buffered Output Enable (1OE or 2OE) input can be used to place the outputs of the corresponding 10-bit latch in either a normal logic state (high or low logic levels) or a high-impedance state. In that state, outputs neither load nor drive the bus lines significantly. The Output Enable (OE) input does not affect the internal operation of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state. To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. PXXXX 04/26/00 1 PI74AVC+16841 2.5V 20-Bit Bus Interface D-Type Latch with 3-State Outputs ## **Product Pin Description** | Pin Name | Description | |-----------------|----------------------------------| | ŌĒ | Output Enable Input (Active LOW) | | LE | Latch Enable | | D | Data Input | | Q | Data Output | | GND | Ground | | V _{CC} | Power | ## Truth Table⁽¹⁾ Each 10-Bit Latch | | Inputs | | | | | | | |----|--------|---|----|--|--|--|--| | ŌĒ | LE | D | Q | | | | | | L | Н | Н | Н | | | | | | L | Н | L | L | | | | | | L | L | X | Qo | | | | | | Н | X | X | Z | | | | | ### Note: 2 - 1. H=High Signal Level - L=Low Signal Level - Z = High Impedance - X = Irrelevant ## **Product Pin Configuration** | 1 Toducti iii Com | igui | ation | | | |-------------------|------|--------|------|------| | | | | | | | 1 OE | 1 | | 56 | 1LE | | 1Q1 | 2 | | 55 | 1D1 | | 1Q2 | 3 | | 54 | 1D2 | | GND | 4 | | 53 | GND | | 1Q3 | 5 | | 52 | 1D3 | | 1Q4 | 6 | | 51 | 1D4 | | VCC | 7 | | 50 | VCC | | 1Q5 | 8 | | 49 | 1D5 | | 1Q6 | 9 | | 48 | 1D6 | | 1Q7 | 10 | | 47 | 1D7 | | | 11 | 56-Pin | 46 | GND | | | 12 | A,K | 45 | 1D8 | | | 13 | | 44 | 1D9 | | 1Q10 | 14 | | 43 | 1D10 | | | 15 | | 42 | 2D1 | | | 16 | | 41 | 2D2 | | 2Q3 | 17 | | 40 | 2D3 | | | 18 | | 39 🛘 | GND | | | 19 | | 38 🛚 | 2D4 | | | 20 | | 37 | 2D5 | | | 21 | | 36 | 2D6 | | VCC | 22 | | 35 | VCC | | | 23 | | 34 | 2D7 | | | 24 | | 33 | 2D8 | | | 25 | | 32 | GND | | | 26 | | 31 | 2D9 | | 2Q10 | 27 | | 30 | 2D10 | | 20E | 28 | | 29 | 2LE | | | | | | | PI74AVC+16841 2.5V 20-Bit Bus Interface D-Type Latch with 3-State Outputs ### **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) | | · · · · · · · · · · · · · · · · · · · | |---|---------------------------------------| | Supply voltage range, V _{CC} | | | Input voltage range, V _I | —0.3 V 10 +4.6 V | | Voltage range applied to any output in the | | | high-impedance or power-off state, V _O ⁽¹⁾ | | | Voltage range applied to any output in the | | | high or low state, V _O ^(1,2) | -0.5 V to V _{CC} $+0.5$ V | | Input clamp current, I _{IK} (V _I <0) | 50mA | | Output clamp current, I _{OK} (V _O <0) | 50mA | | Continuous output current, IO | ±50mA | | Continuous current through each V _{CC} or GND | | | Package thermal impedance, θ _{JA} ⁽³⁾ : package A | 64°C/W | | package K | 48°C/W | | Storage Temperature range, T _{Stg} | –65°C to 150°C | #### Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. #### Notes - 1. Input & output negative-voltage ratings may be exceeded if the input and output curent rating are observed. - 2. Output positive-voltage rating may be exceeded up to 4.6V maximum if theoutput current rating is observed. - 3. The package thermal impedance is calculated in accordance with JESD 51. # **Recommended Operating Conditions**⁽¹⁾ | | | Min. | Max. | Units | |--|---|------------------------|------------------------|-------| | V Complex Voltage | Operating | 1.65 | 3.6 | | | V _{CC} Supply Voltage | Data retention only | 1.2 | | | | | V _{CC} = 1.2V | V _{CC} | | | | V _{IH} High-level Input Voltage | $V_{CC} = 1.65 V \text{ to } 1.95 V$ | 0.65 x V _{CC} | | | | | $V_{CC} = 2.3 V \text{ to } 2.7 V$ | 1.7 | | | | | $V_{CC} = 3V$ to 3.6V | 2 | | | | $V_{ m IL}$ Low-level Input Voltage | $V_{CC} = 1.2V$ | | GND | V | | | $V_{CC} = 1.65 V$ to 1.95 V | | 0.35 x V _{CC} | | | V _{IL} Low-level Input Voltage | $V_{CC} = 2.3 V \text{ to } 2.7 V$ | | 0.7 | | | | $V_{CC} = 3V \text{ to } 3.6V$ | | 0.8 | | | V _I Input Voltage | | 0 | 3.6 | | | | Active State | 0 | V _{CC} | | | V _O Output Voltage | 3-State | 0 | 3.6 | | | | $V_{CC} = 1.65 V$ to 1.95 V | | - 6 | | | I _{OH} High-level output current | $V_{CC} = 2.3 \text{V to } 2.7 \text{V}$ | | - 12 | | | | $V_{CC} = 3V \text{ to } 3.6V$ | | - 24 | | | | $V_{CC} = 1.65 V \text{ to } 1.95 V$ | | 6 | - mA | | I _{OL} Low-level output current | $V_{CC} = 2.3 V \text{ to } 2.7 V$ | | 12 | | | | $V_{CC} = 3V \text{ to } 3.6V$ | | 24 | | | $\Delta t \Delta v$ Input transition rise or fall rate | $V_{CC} = 1.65 \text{V to } 3.6 \text{V}$ | | 5 | ns/V | | T _A Operating free-air temperature | | -40 | 85 | °C | ## **Notes:** 1. All unused inputs must be held at V_{CC} or GND to ensure proper device operation. 3 PI74AVC+16841 2.5V 20-Bit Bus Interface D-Type Latch with 3-State Outputs ## **DC Electrical Characteristics** (Over the Operating Range, $T_A = -40^{\circ}\text{C} + 85^{\circ}\text{C}$) | | Parameters | Test Conditions | V _{CC} | Min. | Max. | Units | | |------------------|----------------------------|---|-----------------|-----------------------|------|-------|--| | | | $I_{OH} = -100 \mu A$ | 1.65V to 3.6V | V _{CC} -0.2V | | | | | | 3 7 | $I_{OH} = -6mA$ $V_{IH} = 1.07V$ | 1.65V | 1.2 | | | | | | V_{OH} | $I_{OH} = -12 \text{mA}$ $V_{IH} = 1.7 \text{V}$ | 2.3V | 1.75 | | | | | | | $I_{OH} = -24 \text{mA}$ $V_{IH} = 2 \text{V}$ | 3V | 2.0 | | V | | | | | $I_{\rm OL} = 100 \mu A$ | 1.65V to 3.6V | | 0.2 | V | | | | V | $I_{OL} = 6mA$ $V_{IH} = 0.57V$ | 1.65V | | 0.45 | | | | | $V_{ m OL}$ | $I_{OL} = 12 \text{mA}$ $V_{IH} = 0.7 \text{V}$ 2.3 V | | | 0.55 | | | | | | $I_{OL} = 24 \text{mA}$ $V_{IH} = 0.8 \text{V}$ | 3V | | 0.75 | | | | I_{I} | Control Inputs | $V_{\rm I} = V_{\rm CC}$ or GND | 3.6V | | ±2.5 | | | | | $I_{ m OFF}$ | $V_{\rm I}$ or $V_{\rm O} = 3.6 V$ | 0 | | ±10 | 4 | | | | I_{OZ} | $V_{\rm I} = V_{\rm CC}$ or GND | 3.6V | | ±10 | μА | | | | I_{CC} | $V_{O} = V_{CC} \text{ or GND} \qquad I_{O} = 0$ | 3.6V | | 40 | | | | | Control Imputs | | 2.5V | | 4 | | | | | Control Inputs | W = W or CND | 3.3V | | 4 | | | | | C _I Data Inputs | $V_{I} = V_{CC}$ or GND | 2.5V | | 6 | "E | | | | | | 3.3V | | 6 | pF | | | Co | Outputs | $V_{\alpha} = V_{\alpha\alpha}$ or CND | 2.5V | | 8 | | | | Co | Outputs | $V_{O} = V_{CC}$ or GND | 3.3V | | 8 | | | **Note:** Typical values are measured at $T_A = 25$ °C. PI74AVC+16841 2.5V 20-Bit Bus Interface D-Type Latch with 3-State Outputs # Timing Requirements over recommended operating free-air temperature range (unless otherwise noted, see Figures 1 thru 4) | | $V_{CC} = 1.2V$ | | $\begin{vmatrix} V_{CC} = 1.2V & V_{CC} = 1.5V \\ \pm 0.1V & \end{vmatrix}$ | | V _{CC} = ±0. | $V_{CC} = 1.8V$ $V_{CC} = 2.5V$ $\pm 0.15V$ $\pm 0.2V$ | | | $V_{CC} = 3.3V$ $\pm 0.3V$ | | Units | |---|-----------------|-----|---|-----|-----------------------|--|-----|-----|----------------------------|-----|-------| | | Min | Max | | | t _w Pulse duration, LE high or low | | | | | | | 3.0 | | 3.0 | | | | t _{su} Setup time, data before LE↑ | | | | | | | 1.1 | | 0.8 | | ns | | t _h Hold time, data after LE↑ | | | | | | | 1.1 | | 0.9 | | | # Switching Characteristics over recommended operating free-air temperature range (unless otherwise noted, see Figures 1 thru 4) | Parameters From (Input) | | From To $VCC = 1.2V$ $\pm 0.1V$ | | | | | $V_{CC} = 2.5V$ $V_{CC} = \pm 0.2V$ $V_{CC} = \pm 0$ | | = 3.3V
.3V | Units | | | | |-------------------------|---------|---------------------------------|------|------|------|------|--|------|---------------|-------|------|------|----| | | (Input) | (Output) | Min. | Max. | | | 4 . | D | Q | | | | | | | | 3.8 | | 2.6 | | | t _{pd} | LE | | | | | | | | | 4.0 | | 2.8 | | | t _{en} | ŌĒ | | | | | | | | | 4.5 | | 4.0 | ns | | t _{dis} | ŌĒ | | | | | | | | | 4.0 | | 3.8 | | 5 ## Operating Characteristics, $T_A = 25^{\circ}C$ | Paran | neters | Test Conditions | $V_{\rm CC}$ = 2.5V ± 0.2 V Typical | $V_{CC} = 3.3V$
$\pm 0.3V$
Typical | Units | |-----------------------|---------------------|-----------------|---|--|-------| | Cpd Power Dissipation | Outputs
Enabled | $C_{L} = 0$ pF, | TBD | TBD | "E | | Capacitance | Outputs
Disabled | f= 10 MHz | TBD | TBD | pF | # PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.2V$ AND $1.5V \pm 0.1V$ # Test S1 tpd Open tpLZ/tpZL 2 x V_{CC} tPHZ/tpZH GND Voltage Waveforms Setup and Hold Times ## Voltage Waveforms Pulse Duration Voltage Waveforms Propagation Delay Times Voltage Waveforms Enable and Disable Times Figure 1. Load Circuit and Voltage Waveforms ### Notes: - A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input impulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MHz}$, $Z_O = 50\Omega$, $t_R \le 2.0 \text{ns}$, $t_F \le 2.0 \text{ns}$. 6 - D. The outputs are measured one at a time with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} - F. t_{PZL} and t_{PZH} are the same as t_{en} - G. t_{PLH} and t_{PHL} are the same as t_{pd} # PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8V \pm 0.15V$ **Load Circuit** # Test S1 tpd Open tpLZ/tpZL 2 x V_{CC} tpHZ/tpZH GND Voltage Waveforms Setup and Hold Times ## Voltage Waveforms Pulse Duration Voltage Waveforms Propagation Delay Times Voltage Waveforms Enable and Disable Times Figure 2. Load Circuit and Voltage Waveforms ### Notes: - A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input impulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MHz}$, $Z_O = 50\Omega$, $t_R \le 2.0 \text{ns}$, $t_F \le 2.0 \text{ns}$. 7 - D. The outputs are measured one at a time with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} - F. t_{PZL} and t_{PZH} are the same as t_{en} - G. t_{PLH} and t_{PHL} are the same as t_{pd} # PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5V \pm 0.2V$ # Test S1 tpd Open tpLz/tpzl 2 x V_{CC} tpHz/tpzh GND Voltage Waveforms Setup and Hold Times Voltage Waveforms Pulse Duration Voltage Waveforms Propagation Delay Times Voltage Waveforms Enable and Disable Times Figure 3. Load Circuit and Voltage Waveforms ### Notes: - A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input impulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MHz}$, $Z_O = 50\Omega$, $t_R \le 2.0 \text{ns}$, $t_F \le 2.0 \text{ns}$. 8 - D. The outputs are measured one at a time with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} - F. t_{PZL} and t_{PZH} are the same as t_{en} - G. t_{PLH} and t_{PHL} are the same as t_{pd} # PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3V \pm 0.3V$ Voltage Waveforms Setup and Hold Times Voltage Waveforms Pulse Duration Voltage Waveforms Propagation Delay Times Voltage Waveforms Enable and Disable Times Figure 4. Load Circuit and Voltage Waveforms ### Notes: - A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input impulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MHz}$, $Z_O = 50\Omega$, $t_R \le 2.0 \text{ns}$, $t_F \le 2.0 \text{ns}$. - D. The outputs are measured one at a time with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} - F. t_{PZL} and t_{PZH} are the same as t_{en} - G. t_{PLH} and t_{PHL} are the same as t_{pd} ## **Pericom Semiconductor Corporation** 2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com