

PE9701

3.0 GHz Integer-N
PLL for Rad Hard
Applications

Description

Peregrine's PE9701 is a high performance integer-N PLL capable of frequency synthesis up to 3.0 GHz. The device is designed for superior phase noise performance while providing an order of magnitude reduction in current consumption, when compared with existing commercial space PLLs.

The PE9701 features a 10/11 dual modulus prescaler, counters and a phase comparator as shown in Figure 1. Counter values are programmable through either a serial or parallel interface and can also be directly hard wired.

The PE9701 is optimized for commercial space applications. Single Event Latch up (SEL) is better than 10^{-9} errors per bit/day. Fabricated in Peregrine's patented UTSi® (Ultra Thin Silicon) CMOS technology, the PE9701 offers excellent RF performance and intrinsic radiation tolerance.

Features

- 3.0 GHz operation
- 10/11 prescaler
- Internal phase detector
- Serial, parallel or hard-wire programmable
- Ultra-low phase noise

Benefits

- SEL immune due to UTSi CMOS
- SEU $< 10^{-9}$ error/bit-day
- 100 krad (Si) total dose
- Reduced design cycles and enhanced reliability
- 44-pin CQFJ

FIGURE 1. PE9701 Block Diagram

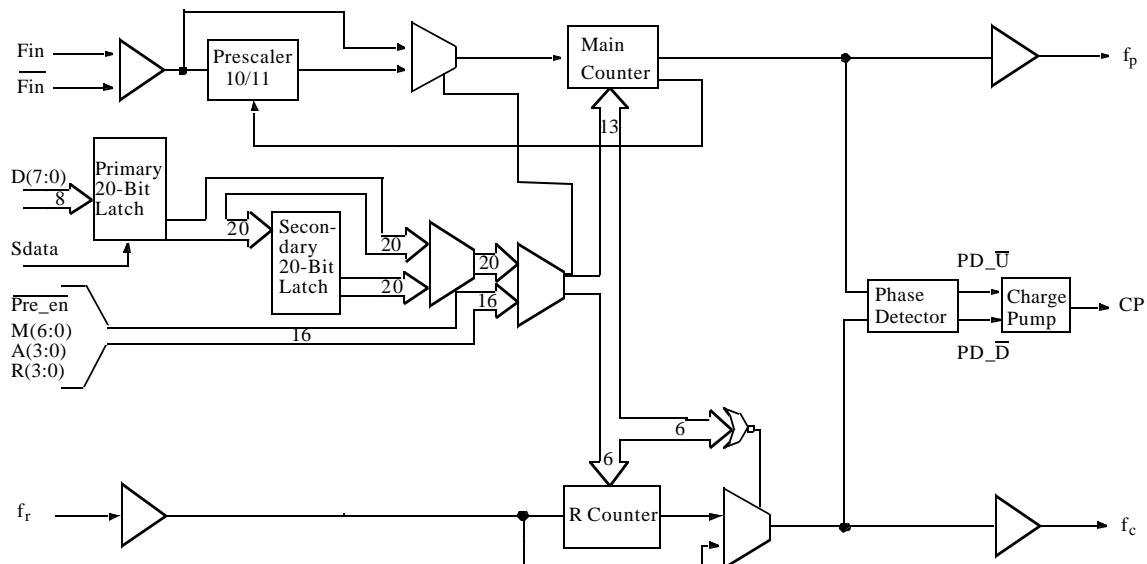
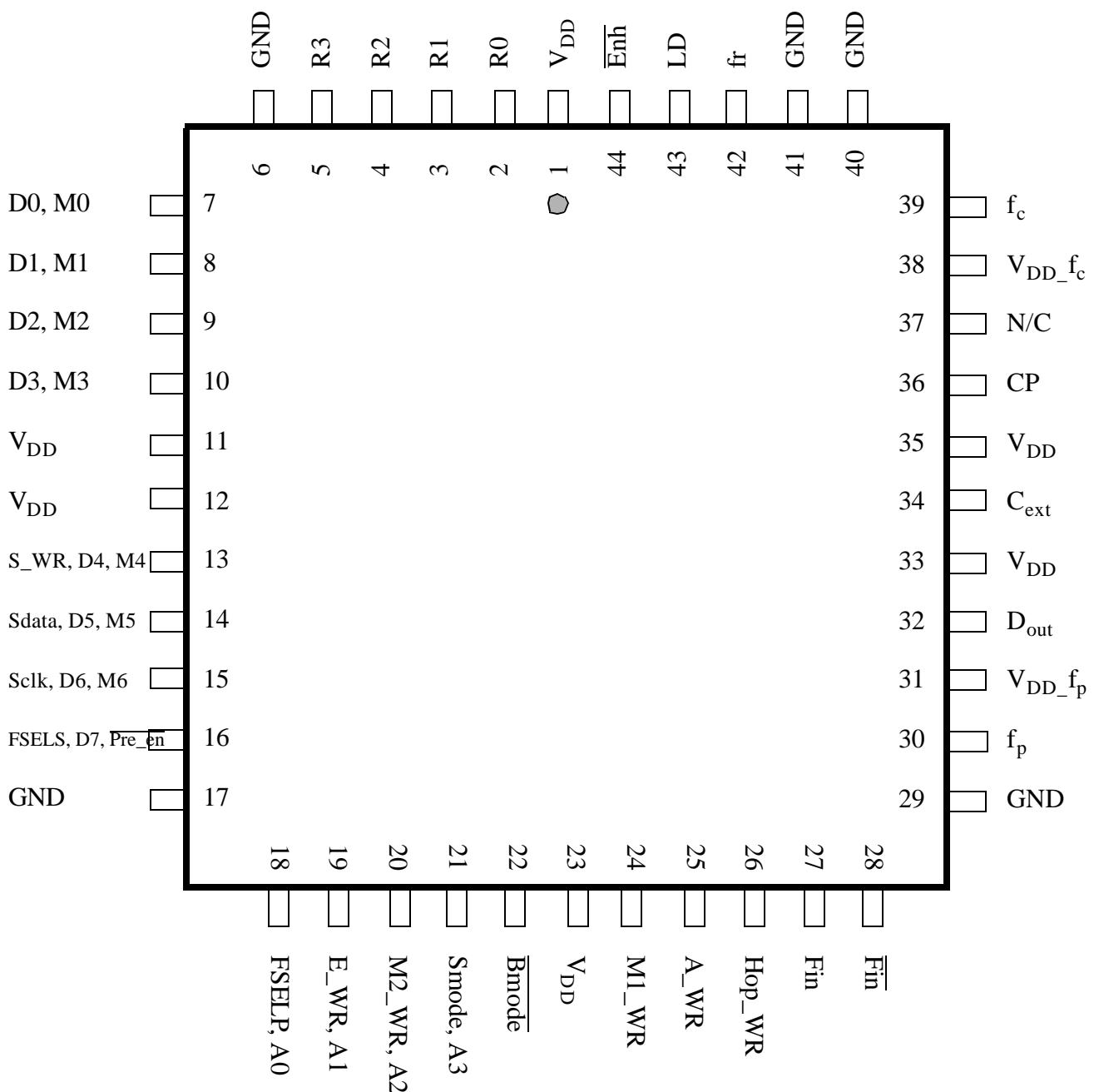



FIGURE 3. PE9701 Pin Configuration

TABLE 1. PE9701 Pin Description

Pin No.	Pin Name	Interface Mode	Type	Description
1	V _{DD}	all	(Note 1)	Power supply input. Input may range from 2.85 V to 3.15 V. Bypassing recommended.
2	R0	Direct	Input	R Counter bit0 (LSB).
3	R1	Direct	Input	R Counter bit1.
4	R2	Direct	Input	R Counter bit2.
5	R3	Direct	Input	R Counter bit3.
6	GND	all	(Note 1)	Ground.
7	D0	Parallel	Input	Parallel data bus bit0 (LSB).
	M0	Direct	Input	M Counter bit0 (LSB).
8	D1	Parallel	Input	Parallel data bus bit1.
	M1	Direct	Input	M Counter bit1.
9	D2	Parallel	Input	Parallel data bus bit2.
	M2	Direct	Input	M Counter bit2.
10	D3	Parallel	Input	Parallel data bus bit3.
	M3	Direct	Input	M Counter bit3.
11	V _{DD}	all	(Note 1)	Same as pin 1.
12	V _{DD}	all	(Note 1)	Same as pin 1.
13	S_WR	Serial	Input	Serial load enable input. While S_WR is “low”, Sdata can be serially clocked. Primary register data are transferred to the secondary register on S_WR or Hop_WR rising edge.
	D4	Parallel	Input	Parallel data bus bit4.
	M4	Direct	Input	M Counter bit4.
14	Sdata	Serial	Input	Binary serial data input. Input data entered MSB first.
	D5	Parallel	Input	Parallel data bus bit5.
	M5	Direct	Input	M Counter bit5.
15	SClk	Serial	Input	Serial clock input. Sdata is clocked serially into the 20-bit primary register (E_WR “low”) or the 8-bit enhancement register (E_WR “high”) on the rising edge of SClk.
	D6	Parallel	Input	Parallel data bus bit6.
	M6	Direct	Input	M Counter bit6.
16	FSELS	Serial	Input	Selects contents of primary register (FSELS=1) or secondary register (FSELS=0) for programming of internal counters while in Serial Interface Mode.
	D7	Parallel	Input	Parallel data bus bit7 (MSB).
	Pre_en	Direct	Input	Prescaler enable, active “low”. When “high”, Fin bypasses the prescaler.
17	GND	all		Ground.
18	FSELP	Parallel	Input	Selects contents of primary register (FSELP=1) or secondary register (FSELP=0) for programming of internal counters while in Parallel Interface Mode.
	A0	Direct	Input	A Counter bit0 (LSB).
19	E_WR	Serial	Input	Enhancement register write enable. While E_WR is “high”, Sdata can be serially clocked into the enhancement register on the rising edge of SClk.
		Parallel	Input	Enhancement register write. D[7:0] are latched into the enhancement register on the rising edge of E_WR.
	A1	Direct	Input	A Counter bit1.

Pin No.	Pin Name	Interface Mode	Type	Description
20	M2_WR	Parallel	Input	M2 write. D[3:0] are latched into the primary register (R[5:4], M[8:7]) on the rising edge of M2_WR.
	A2	Direct	Input	A Counter bit2.
21	Smode	Serial, Parallel	Input	Selects serial bus interface mode ($\overline{Bmode}=0$, Smode=1) or Parallel Interface Mode ($\overline{Bmode}=0$, Smode=0).
	A3	Direct	Input	A Counter bit3 (MSB).
22	\overline{Bmode}	all	Input	Selects direct interface mode ($\overline{Bmode}=1$).
23	V _{DD}	all	(Note 1)	Same as pin 1.
24	M1_WR	Parallel	Input	M1 write. D[7:0] are latched into the primary register ($\overline{Pre_en}$, M[6:0]) on the rising edge of M1_WR.
25	A_WR	Parallel	Input	A write. D[7:0] are latched into the primary register (R[3:0], A[3:0]) on the rising edge of A_WR.
26	Hop_WR	Serial, Parallel	Input	Hop write. The contents of the primary register are latched into the secondary register on the rising edge of Hop_WR.
27	Fin	all	Input	Prescaler input from the VCO. 2.0GHz max frequency.
28	\overline{Fin}	all	Input	Prescaler complementary input. A bypass capacitor in series with a 51Ω resistor should be placed as close as possible to this pin and be connected directly to the ground plane.
29	GND	all		Ground.
30	f _p	all	Output	Monitor pin for main divider output. Switching activity can be disabled through enhancement register programming or by floating or GNDing V _{DD} pin 31.
31	V _{DD_fc}	all	(Note 1)	VDD for Fc.
32	Dout	Serial, Parallel	Output	Data Out. The MSEL signal and the raw prescaler output are available on Dout through enhancement register programming.
33	V _{DD}	all	(Note 1)	Same as pin 1.
34	Cext	all	Output	Logical “OR” of PD_U and PD_D terminated through an on chip, $2k\Omega$ series resistor. Connecting Cext to an external capacitor will low pass filter the input to the inverting amplifier used for driving LD.
35	V _{DD}	all	(Note 1)	Same as pin 1.
36	CP	all	Output	Charge pump current is sourced for “up” when f _c leads f _p and sinked for “down” when f _c lags f _p .
37	NC	all		No connection
38	V _{DD_fp}	all	(Note 1)	VDD for Fp.
39	f _c	all	Output	Monitor pin for reference divider output. Switching activity can be disabled through enhancement register programming or by floating or GNDing V _{DD} pin 38.
40	GND	all		Ground.
41	GND	all		Ground.
42	f _r	all	Input	Reference frequency input.
43	LD	all	Output, OD	Lock detect and open drain logical inversion of CEXT. When the loop is in lock, LD is high impedance, otherwise LD is a logic low (“0”).
44	\overline{Enh}	Serial, Parallel	Input	Enhancement mode. When asserted low (“0”), enhancement register bits are functional.

Note 1: V_{DD} pins 1, 11, 12, 23, 31, 33, 35, and 38 are connected by diodes and must be supplied with the same positive voltage level.

V_{DD} pins 31 and 38 are used to enable test modes and should be left floating

Note 2: All digital input pins have $70k\Omega$ pull-down resistors to ground.

Ratings and Operating Ranges

TABLE 2. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Max	Unit
V_{DD}	Supply voltage	-0.3	4.0	V
V_I	Voltage on any input	-0.3	$V_{DD} + 0.3$	V
I_I	DC into any input	-10	+10	mA
I_O	DC into any output	-10	+10	mA
T_{stg}	Storage temperature range	-65	150	°C

TABLE 3. Operating Ranges

Symbol	Parameter/Conditions	Min	Max	Unit
V_{DD}	Supply voltage	2.85	3.15	V
T_A	Operating ambient temperature range	-40	85	°C

TABLE 4. ESD Ratings

Symbol	Parameter/Conditions	Min	Max	Unit
V_{ESD}	ESD Voltage, Human body model (Note 1)	1000		V

Note 1: Periodically sampled, not 100% tested. Tested per MIL-STD-883, M3015 C2; 2KV.

Electrostatic Discharge (ESD) Precautions

When handling this UTSi device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains

circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in Table 4.

Latch-up Avoidance

Unlike conventional CMOS devices, UTSi CMOS devices are immune to latch-up.

TABLE 5. DC Characteristics

 $V_{DD} = 3.0 \text{ V}$, $-40^\circ\text{C} < T_A < 85^\circ\text{C}$, unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
I_{DD}	Operational supply current; Prescaler disabled Prescaler enabled	$V_{DD} = 2.85 \text{ to } 3.15 \text{ V}$		10 40		mA mA
Digital inputs: All except f_p , f_{in} , \bar{f}_{in}						
V_{IH}	High level input voltage	$V_{DD} = 2.85 \text{ to } 3.15 \text{ V}$	$0.7 \times V_{DD}$			V
V_{IL}	Low level input voltage	$V_{DD} = 2.85 \text{ to } 3.15 \text{ V}$			$0.3 \times V_{DD}$	V
I_{IH}	High level input current	$V_{IH} = V_{DD} = 3.15 \text{ V}$			+70	μA
I_{IL}	Low level input current	$V_{IL} = 0, V_{DD} = 3.15 \text{ V}$	-1			μA
Reference Divider input: f_r						
I_{IHR}	High level input current	$V_{IH} = V_{DD} = 3.15 \text{ V}$			+100	μA
I_{ILR}	Low level input current	$V_{IL} = 0, V_{DD} = 3.15 \text{ V}$	-100			μA
R0 Input: (R0)						
I_{IHR}	High level input current	$V_{IH} = V_{DD} = 3.15 \text{ V}$			+70	μA
I_{ILR}	Low level input current	$V_{IL} = 0, V_{DD} = 3.15 \text{ V}$	-5			μA
Counter and phase detector outputs: f_c , f_p ,						
V_{OLD}	Output voltage LOW	$I_{out} = 6 \text{ mA}$			0.4	V
V_{OHD}	Output voltage HIGH	$I_{out} = -3 \text{ mA}$	$V_{DD} - 0.4$			V
Lock detect outputs: (Cext, LD)						
V_{OLC}	Output voltage LOW, Cext	$I_{out} = 100 \mu\text{A}$			0.4	V
V_{OHC}	Output voltage HIGH, Cext	$I_{out} = -100 \mu\text{A}$	$V_{DD} - 0.4$			V
V_{OLLD}	Output voltage LOW, LD	$I_{out} = 6 \text{ mA}$			0.4	V
Charge Pump Output (CP):						
I_{CP} - Source	Drive current	$V_{CP} = V_{DD}/2$	-2.6	-2	-1.4	mA
I_{CP} - Sink	Drive current	$V_{CP} = V_{DD}/2$	1.4	2	2.6	mA
I_{CPL}	Leakage current	$1.0 \text{ V} < V_{CP} < V_{DD} - 1.0 \text{ V}$	-1		1	μA
I_{CP} - Source vs. I_{CP} Sink	Sink vs. source mismatch	$V_{CP} = V_{DD}/2, T_A = 25^\circ\text{C}$			15	%
I_{CP} vs. V_{CP}	Output current magnitude variation vs. voltage	$1.0 \text{ V} < V_{CP} < V_{DD} - 1.0 \text{ V}$ $T_A = 25^\circ\text{C}$			15	%

TABLE 6. AC Characteristics

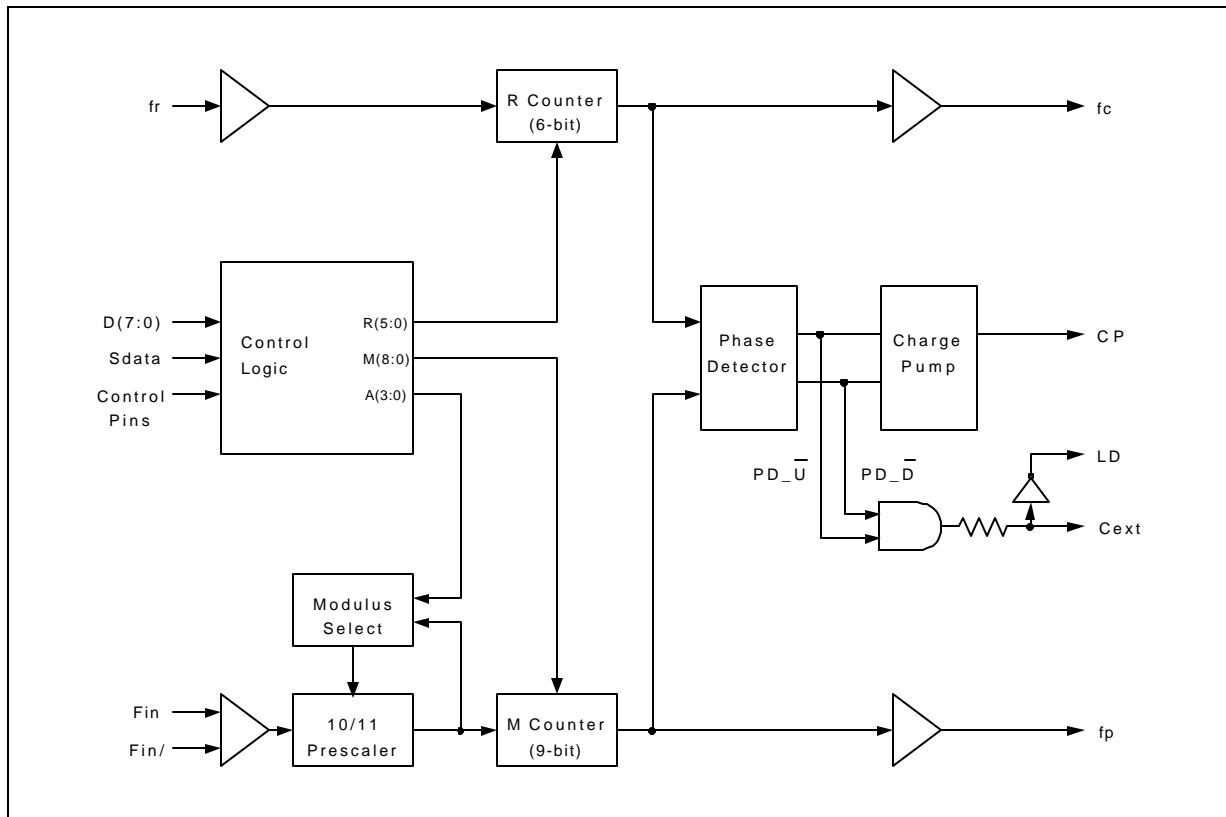
 $V_{DD} = 3.0 \text{ V}$, $-40^\circ\text{C} < T_A < 85^\circ\text{C}$, unless otherwise specified

Symbol	Parameter	Conditions	Min	Max	Unit
Control Interface and Latches (see Figure 4)					
f_{Clk}	Serial data clock frequency	(Note 1)		10	MHz
t_{ClkH}	Serial clock HIGH time		30		ns
t_{ClkL}	Serial clock LOW time		30		ns
t_{DSU}	Sdata set-up time to Sclk rising edge, D[7:0] set-up time to M1_WR, M2_WR, A_WR, E_WR rising edge		10		ns
t_{DHLD}	Sdata hold time after Sclk rising edge, D[7:0] hold time to M1_WR, M2_WR, A_WR, E_WR rising edge		10		ns
t_{PW}	S_WR, M1_WR, M2_WR, A_WR, E_WR pulse width		30		ns
t_{CWR}	Sclk rising edge to S_WR rising edge. S_WR, M1_WR, M2_WR, A_WR falling edge to Hop_WR rising edge		30		ns
t_{CE}	Sclk falling edge to E_WR transition		30		ns
t_{WRC}	S_WR falling edge to Sclk rising edge. Hop_WR falling edge to S_WR, M1_WR, M2_WR, A_WR rising edge		30		ns
t_{EC}	E_WR transition to Sclk rising edge.		30		ns
t_{MDO}	MSEL data out delay after Fin rising edge	$C_L = 12\text{pf}$		8	ns
Main Divider (Including Prescaler)					
f_{in}	Operating frequency		500	3000	MHz
P_{fin}	Input level range	External AC coupling	-5	5	dBm
Reference Divider					
f_r	Operating frequency			100	MHz
P_{fr}	Reference input power (Note 2)	Single ended input	-2		dBm
Phase Detector					
f_c	Comparison frequency	(Note 3)		20	MHz

Note 1: Fclk is verified during the functional pattern in test. Serial programming section of the functional pattern are clocked at 10 MHz to verify Fclk specification.

Note 2: CMOS logic levels may be used to drive reference input if DC coupled. Voltage input needs to be a minimum of 0.5Vp-p.

Note 3: Parameter is guaranteed through characterization only and is not tested.


Functional Description

Overview

The PE9701 consists of a prescaler, counters, a phase detector and control logic. The dual modulus prescaler divides the VCO frequency by either 10 or 11, depending on the value of the modulus select. Counters “R” and “M” divide the reference and prescaler output, respectively, by integer values stored in a 20-bit register. An additional counter (“A”) is used in the modulus select logic. The phase-frequency detector generates up and down frequency control signals. The

control logic includes a selectable chip interface. Data can be written via serial bus, parallel bus, or hardwired direct to the pins. There are also various operational and test modes and lock detect.

FIGURE 4. PE9701 Functional Block Diagram

Main counter chain

The main counter chain divides the RF input frequency, f_{in} , by an integer derived from the user defined values in the “M” and “A” counters. It is composed of the 10/11 dual modulus prescaler, modulus select logic, and 9 bit M counter. Setting Pre_en “low” enables the 10/11 prescaler. Setting Pre_en “high” allows f_{in} to bypass the prescaler and powers down the prescaler.

The output from the main counter chain, f_p , is related to the VCO frequency, f_{in} , by the following equation:

$$f_p = f_{in} / [10 x (M + 1) + A] \quad (1)$$

where $A \leq M + 1$, $M \geq 0$

When the loop is locked, f_{in} is related to the reference frequency, f_r , by the following equation:

$$f_{in} = [10 x (M + 1) + A] x (f_r / (R+1)) \quad (2)$$

where $A \leq M + 1$, $M \geq 0$

A consequence of the upper limit on A is that f_{in} must be greater than or equal to $90 x (f_r / (R+1))$ to obtain contiguous channels. Programming the M Counter with the minimum value of “1” will result in a minimum M Counter divide ratio of “2”.

In Direct Interface Mode, main counter inputs M_7 and M_8 are internally forced low.

Reference counter

The reference counter chain divides the reference frequency, f_r , down to the phase detector comparison frequency, f_c .

The output frequency of the 6 bit R Counter is related to the reference frequency by the following equation:

$$f_c = f_r / (R + 1) \quad (3)$$

where $R \geq 0$

Note that programming R equal to “0” will pass the reference frequency, f_r , directly to the phase detector.

In Direct Interface Mode, R Counter inputs R_5 and R_4 are internally forced low (“0”).

Register programming

Parallel Interface Mode

Parallel Interface Mode is selected by setting the Bmode input “low” and the Smode input “low”.

Parallel input data, $D[7:0]$, are latched in a parallel fashion into one of three, 8-bit primary register sections on the rising edge of $M1_WR$, $M2_WR$, or A_WR per the mapping shown in Table7 on page10. The contents of the primary register are transferred into a secondary register on the rising edge of Hop_WR according to the timing diagram shown in Figure 5. Data are transferred to the counters as shown in Table7 on page10.

The secondary register acts as a buffer to allow rapid changes to the VCO frequency. This double buffering for “ping-pong” counter control is programmed via the FSELP input. When FSELP is “high”, the primary register contents set the counter inputs. When FSELP is “low”, the secondary register contents are utilized.

Parallel input data, $D[7:0]$, are latched into the enhancement register on the rising edge of E_WR according to the timing diagram shown in Figure 5. This data provides control bits as shown in Table8 on page10 with bit functionality enabled by asserting the Enh input “low”.

Serial Interface Mode

Serial Interface Mode is selected by setting the Bmode input “low” and the Smode input “high”.

While the E_WR input is “low” and the S_WR input is “low”, serial input data (Sdata input), B_0 to B_{19} , are clocked serially into the primary register on the rising

edge of Sclk, MSB (S_0) first. The contents from the primary register are transferred into the secondary register on the rising edge of either S_WR or Hop_WR according to the timing diagram shown in Figure 6. Data are transferred to the counters as shown in Table7 on page10.

The double buffering provided by the primary and secondary registers allows for “ping-pong” counter control using the FSELS input. When FSELS is “high”, the primary register contents set the counter inputs. When FSELS is “low”, the secondary register contents are utilized.

While the E_WR input is “high” and the S_WR input is “low”, serial input data (Sdata input), B_0 to B_7 , are clocked serially into the enhancement register on the rising edge of Sclk, MSB (S_0) first. The enhancement register is double buffered to prevent inadvertent

control changes during serial loading, with buffer capture of the serially entered data performed on the falling edge of E_WR according to the timing diagram shown in Figure 6. After the falling edge of E_WR, the data provide control bits as shown in Table8 on page10 with bit functionality enabled by asserting the Enh input “low”.

Direct Interface Mode

Direct Interface Mode is selected by setting the Bmode input “high”.

Counter control bits are set directly at the pins as shown in Table 7 on page10. In Direct Interface Mode, main counter inputs M_7 and M_8 , and R Counter inputs R_5 and R_4 are internally forced low (“0”).

TABLE 7. PE9701 Primary Register Programming

Interface Mode	Enh	Bmode	Smode	R_5	R_4	M_8	M_7	Pre_en	M_6	M_5	M_4	M_3	M_2	M_1	M_0	R_3	R_2	R_1	R_0	A_3	A_2	A_1	A_0
Parallel	1	0	0	M2_WR rising edge load				M1_WR rising edge load										A_WR rising edge load					
Serial*	1	0	1	B_0	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9	B_{10}	B_{11}	B_{12}	B_{13}	B_{14}	B_{15}	B_{16}	B_{17}	B_{18}	B_{19}
Direct	1	1	X	0	0	0	0	Pre_en	M_6	M_5	M_4	M_3	M_2	M_1	M_0	R_3	R_2	R_1	R_0	A_3	A_2	A_1	A_0

*Serial data clocked serially on Sclk rising edge while E_WR “low” and captured in secondary register on S_WR rising edge.

TABLE 8. PE9701 Enhancement Register Programming

Interface Mode	Enh	Bmode	Smode	Reserved	Reserved	Reserved	Power down	Counter load	MSEL output	Prescaler output	$f_c, f_p \overline{OE}$
Parallel											
Serial*	0	X	0	D7	D6	D5	D4	D3	D2	D1	D0

*Serial data clocked serially on Sclk rising edge while E_WR “high” and captured in the double buffer on E_WR falling edge.

FIGURE 5. Parallel Interface Mode Timing Diagram

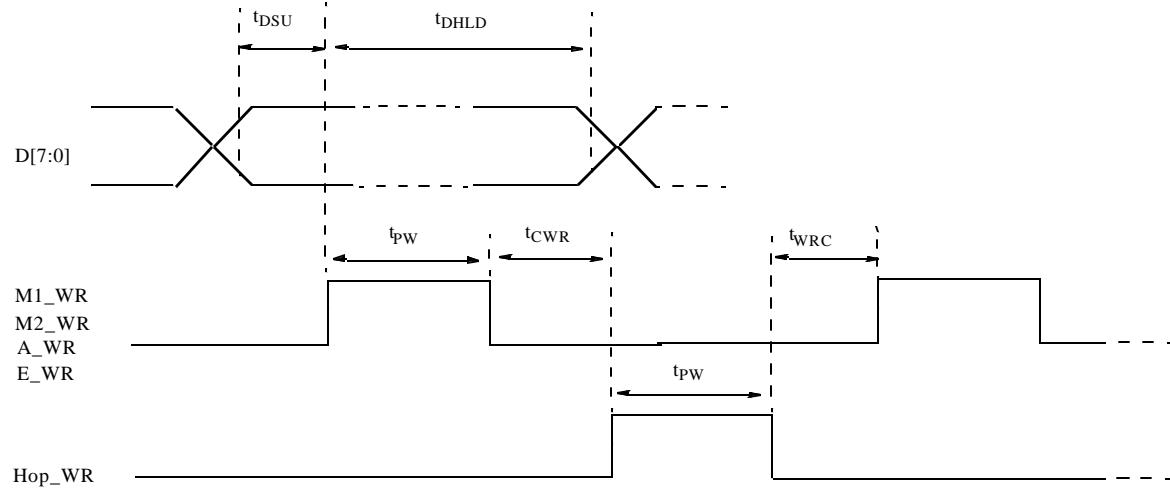
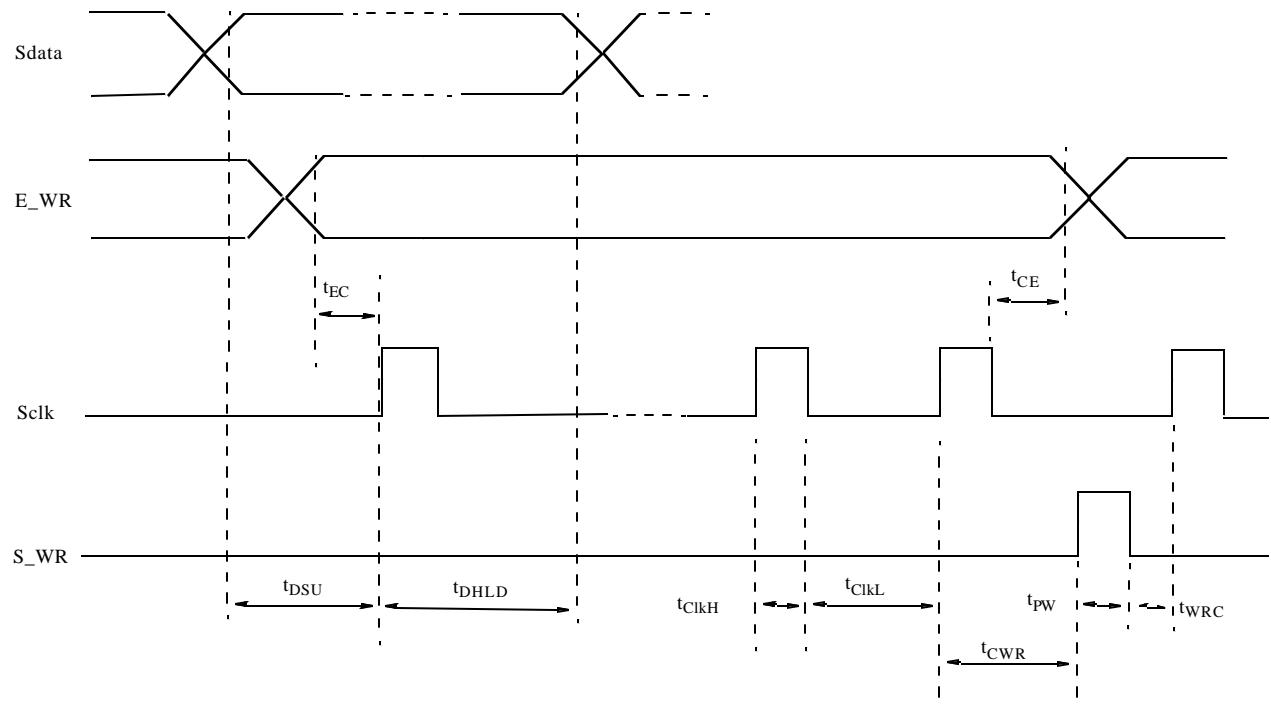



FIGURE 6. Serial Interface Mode Timing Diagram

Enhancement register

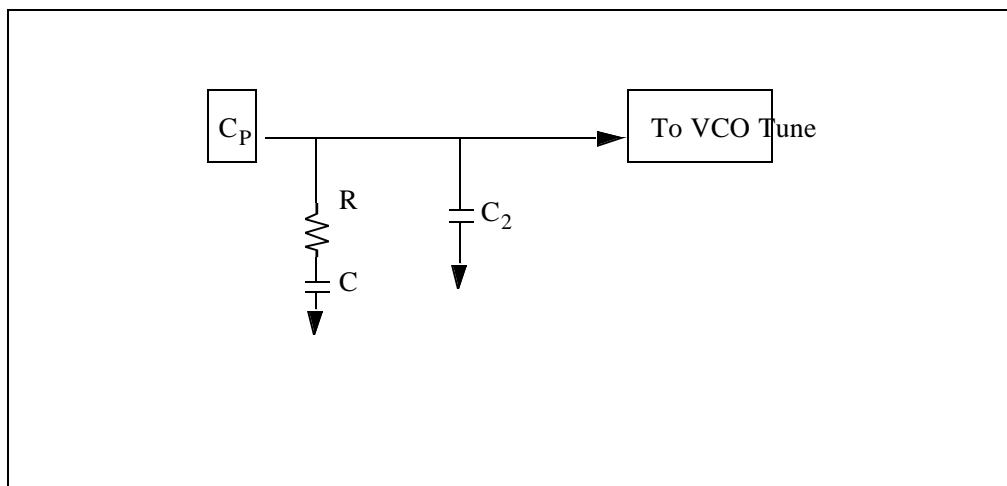
The functions of the enhancement register bits are shown Table 9 with all bits active “high”.

TABLE 9. Enhancement Register Bit Functionality

Bit function		Description
Bit 0	Reserved **	
Bit 1	Reserved **	
Bit 2	Reserved **	
Bit 3	Power down	Power down of all functions except programming interface.
Bit 4	Counter load	Immediate and continuous load of counter programming as directed by the Bmode and Smode inputs.
Bit 5	MSEL output	Drives the internal dual modulus prescaler modulus select (MSEL) onto the Dout output.
Bit 6	Prescaler output	Drives the raw internal prescaler output (fmain) onto the Dout output.
Bit 7	$f_p, f_c \overline{OE}$	f_p, f_c outputs disabled.

** Program to 0

Phase detector


The phase detector is triggered by rising edges from the main Counter (f_p) and the reference counter (f_c). It has two outputs, namely PD_U, and PD_D. If the divided VCO leads the divided reference in phase or frequency (f_p leads f_c), PD_D pulses “high”. If the divided reference leads the divided VCO in phase or frequency (f_r leads f_c), PD_U pulses “high”. The width of either pulse is directly proportional to phase offset between the two input signals, f_p and f_c .

The signals from the phase detector couple directly to a charge pump. PD_U controls a current source at pin CP with constant amplitude and pulse duration approximately the same as PD_U. PD_D similarly drives a current sink at pin CP. The current pulses from pin CP are low pass filtered externally and then connected to the VCO tune voltage. PD_U pulses result in a current source, which increases the VCO frequency and PD_D results in a current sink, which decreases VCO frequency.

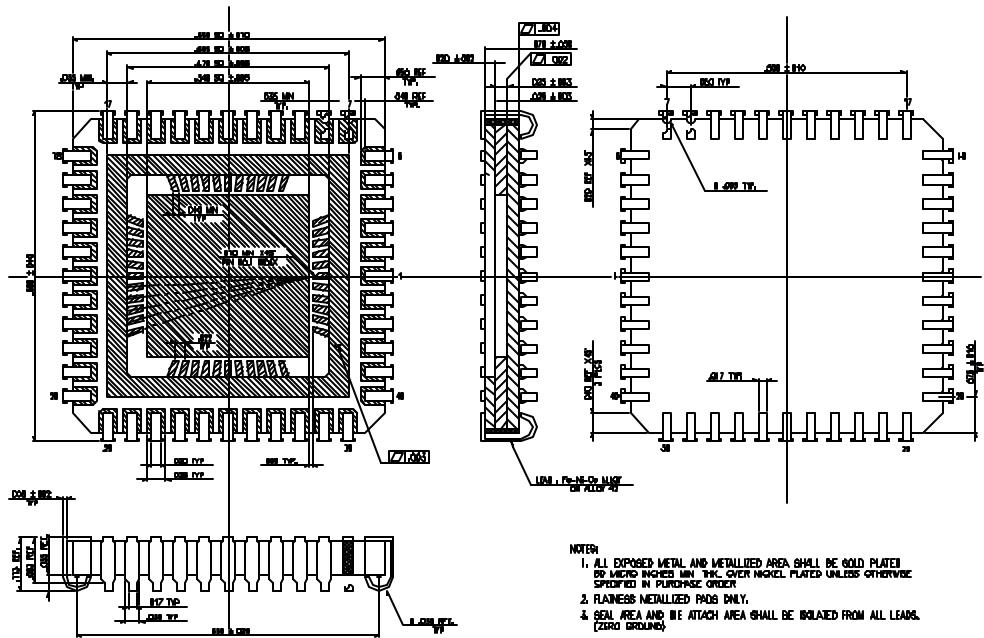

A lock detect output, LD is also provided, via the pin Cext. Cext is the logical “OR” of PD_U and PD_D waveforms, which is driven through a series 2kohm resistor. Connecting Cext to an external shunt capacitor provides integration. Cext also drives the input of an internal inverting comparator with an open drain output. Thus LD is a “NOR” function of PD_U and PD_D.

FIGURE 7. Typical PE9601 Loop Filter Application Example

Package Drawings

TABLE 10. PE9701 Ordering Information

Order Code	Part Marking	Description	Package	Shipping Method
9701-01	PE9701 ES	Engineering Samples	44-pin CQFJ	40 Units/Tray
9701-11	PE9701	Flight Units	44-pin CQFJ	40 Units/Tray
9701-00	PE9701EK		Evaluation Board	1/Box

Sales Offices

United States

Peregrine Semiconductor Corp.
6175 Nancy Ridge Drive
San Diego, CA 92121
Tel (858) 455-0660
Fax (858) 455-0770

For a representative in your local area,
please refer to our web site at
www.peregrine-semi.com

Europe

Peregrine Semiconductor Europe
Aix-En-Provence office
Parc Club du Golf, bat 9
13856 Aix-En-Provence Cedex 3 France
Tel +33 (0)4 4239-3360
Fax +33 (0)4 4239-7227

Data Sheet Identification

Advance Information

The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The data sheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a PCN (Product Change Notice).

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Peregrine products are protected under one or more of the following US patents: 5,416,043; 5,600,169; 5,572,040; 5,492,857; 5,663,570; 5,596,205; 5,610,790. Other patents may be pending or applied for.

