

PI74ALVCHR162524

18-Bit Registered Bus Transceiver with 3-State Outputs

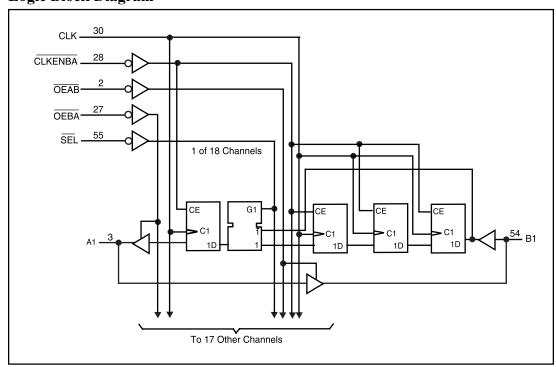
Product Features

- PI74ALVCHR162524 is designed for low voltage operation
- $V_{CC} = 2.3 \text{V to } 3.6 \text{V}$
- A & B parts have equivalent 26 Ohm series resistors
- Typical V_{OLP} (Output Ground Bounce) < 0.8V at $V_{CC} = 3.3V$, $T_A = 25$ °C
- Typical V_{OHV} (Output V_{OH} Undershoot) < 2.0 V at $V_{CC} = 3.3 \text{V}$, $T_A = 25 ^{\circ}\text{C}$
- Bus Hold retains last active bus state during 3-State eliminating the need for external pullup resistors
- Industrial operation at -40°C to +85°C
- Packages available:
 - -56-pin 240 mil wide plastic TSSOP (A)
 - -56-pin 300 mil wide plastic SSOP (V)

Product Description

Pericom Semiconductor's PI74ALVCH series of logic circuits are produced using the Company's advanced 0.5 micron CMOS technology, achieving industry leading speed.

The PI74ALVCHR162524 data flow in each direction is controlled by output-enable (OEAB and OEBA) and clock-enable (CLKENBA) inputs. For the A-to-B data flow, the data flows through a single buffer. The B-to-A data can flow through a four-stage pipeline register path, or through a single register path, depending on the state of the select (SEL) input.

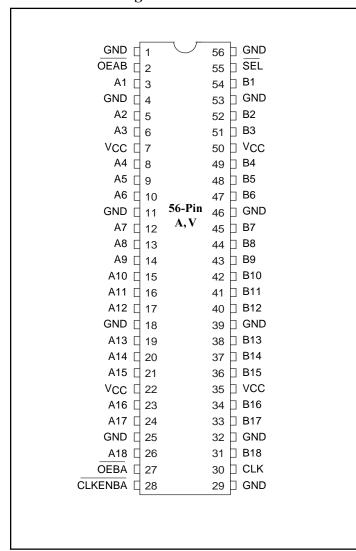

Data is stored in the internal registers on the low-to-high transition of the clock (CLK) input, provided that the appropriate CLKENBA input is low. The B-to-A data transfer is synchronized with CLK.

To reduce overshoot and undershoot, the A and B-port outputs include 26-ohm series resistors.

To ensure the high-impedance state during power up or power down, OE should be tied to Vcc through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The PI74ALVCHR162524 has "Bus Hold" which retains the data input's last state whenever the data input goes to high-impedance preventing "floating" inputs and eliminating the need for pullup/ down resistors.

Logic Block Diagram



Product Pin Description

Pin Name	Description
CLKEN	Clock Enable Input (Active LOW)
SEL	Select (Active LOW)
CLK	Clock Input (Active HIGH)
Ax	Data I/O
Bx	Data I/O
GND	Ground
Vcc	Power

Product Pin Configuration

Truth Table^{(1)†} B to A Storage (OEBA = L)

	Outputs			
CLKENBA	CLK	SEL	В	A
Н	X	X	X	A ₀ ‡
L	1	Н	L	L
L	1	Н	Н	Н
L	1	L	L	L§
L	1	L	Н	H§

Note:

2

.....

- 1. H = High Signal Level
 - L = Low Signal Level
 - Z = High Impedance
 - ↑ = LOW-to-HIGH Transition
- ‡ Output level before the indicated steady-state input conditions were established.
- § Four positive CLK edges are needed to propagate data from B to A when SEL is low.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

<u> </u>
Storage Temperature—65°C to +150°C
Supply Voltage Range, V _{CC} 0.5V to 4.6V
Input Voltage Range, V _I : Except
I/O ports ⁽¹⁾ 0.5Vto4.6V
I/O ports ^(1,2) 0.5V to V _{CC} +0.5V
Output Voltage Range, $V_0^{(1,2)}$ 0.5V to V_{CC} + 0.5V
Input Clamp current, $I_{IK}(V_I < 0)$
Output Clamp current, $I_{OK}(V_O \le 0)$ 50mA
Continous Output Current, I _O ±50mA
Continous Current through each V_{CC} or GND ± 100 mA
Maximum Power Dissipation:
A package
V package

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Notes:

- 1. The input and output negative-voltage ratings maybe exceeded if the input and outputclamp-current ratings are observed.
- 2. This value is limited to 4.6V maximum.

Recommended Operating Conditions(1)

Parameters	Description	Test Conditions	Min.	Тур.	Max.	Units
V _{CC}	Supply Voltage		2.3		3.6	
17	Innet HIGH Veles	$V_{CC} = 2.3 \text{V to } 2.7 \text{V}$	1.7			
$V_{ m IH}$	Input HIGH Voltage	$V_{CC} = 2.7V \text{ to } 3.6V$	2.0			
17_	Innut I OW Valtage	$V_{CC} = 2.3 \text{V to } 2.7 \text{V}$			0.7	V
$ m V_{IL}$	Input LOW Voltage	$V_{CC} = 2.7 \text{V to } 3.6 \text{V}$			0.8	
V _{IN}	Input Voltage		0		V _{CC}	
Vout	Output Voltage		0		V _{CC}	
		$V_{CC} = 2.3V$			-6	
I_{OH}	High-level Output Current	$V_{CC} = 2.7V$			-8	
		$V_{CC} = 3.0V$			-12	
		$V_{CC} = 2.3V$			6	mA
I_{OL}	Low-level Output Current	$V_{CC} = 2.7V$			8	
		$V_{CC} = 3.0V$			12	
$T_{\mathbf{A}}$	Operating Free-Air Temperature		-40		85	°C
$\Delta t/\Delta v^{(2)}$	Input Transition Rise or Fall				10	ns/V

Note

- 1. Unused control inputs must be held HIGH or LOW to prevent them from floating.
- 2. See test circuit and waveforms.

DC Electrical Characteristics (Over the Operating Range, TA = -40°C to +85°C, $VCC = 3.3V \pm 10$ %)

Parameters	Test Condit	ions	V _{CC} ⁽¹⁾	Min.	Typ.(2)	Max.	Units
	$I_{OH} = -100 \ \mu A$		Min. to Max.	V _{CC} -0.2			
	I _{OH} = -6 MA	$V_{IH} = 1.7V$	2.3V	2.0			
$V_{ m OH}$		$V_{IH} = 1.7V$	2.3V	1.7			
	$I_{OH} = -12 \text{ mA}$	$V_{IH} = 2.0V$	2.7V	2.2			
		$V_{IH} = 2.0V$	3.0V	2.4			
	I_{OH} = -24 mA	$V_{IH} = 2.0V$	3.0V	2.0			V
	$I_{OL} = 100 \mu A$		Min. to Max.			0.2	
	$I_{\rm OL} = 6 \text{ mA}$	$V_{IL} = 0.7V$	2.3V			0.4	
$V_{ m OL}$	In = 12 m/s	$V_{IL} = 0.7V$	2.3V			0.7	
	$I_{OL} = 12 \text{ mA}$	$V_{IL} = 0.8V$	2.7V			0.4	
	$I_{\rm OL} = 24 \text{ mA}$	$V_{\rm IL} = 0.8 V$	3.0V			0.55	
I _I	$V_{I} = V_{CC}$ or GND	3.6V			±5		
	$V_{I} = 0.7V$	2.21/	45				
	$V_{\rm I} = 1.7 V$		2.3V	-45			
I _I (Hold) ⁽³⁾	$V_{I} = 0.8V$		2.01/	75			
	$V_{\rm I} = 2.0 \rm V$		3.0V	-75			μΑ
	$V_I = 0$ to 3.6V		3.6V			±500	
$I_{OZ}^{(4)}$	$V_{O} = V_{CC}$ or GND		3.6V			±10	
I _{CC}	$V_{\rm I} = V_{\rm CC}$ or GND $I_{\rm O} = 0$		3.6V			40	
ΔI_{CC}	One input at V _{CC} - 0.6V, Other inpu	3V to 3.6V			750		
C _I Control Inputs	$V_{I} = V_{CC}$ or GND	3.3V		4		pF	
C _{IO} A or B ports	$V_{O} = V_{CC}$ or GND		3.3V		8		pF

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

4

- 2. Typical values are at $V_{CC} = 3.3V$, $+25^{\circ}C$ ambient and maximum loading.
- 3. Bus Hold maximum dynamic current required to switch the input from one state to another.
- 4. For I/O ports, the I_{OZ} includes the input leakage current.

Timing Requirements over Operating Range

Downstows	Description	$V_{\rm CC} = 2.5 \text{V} \pm 0.2 \text{V}$		$V_{CC} = 2.7V$		$\mathbf{V_{CC}} = 3.3\mathbf{V} \pm 0.3\mathbf{V}$		Units
Parameters	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
fCLOCK	Clock frequency	0	120	0	125	0	150	MHz
t _W Pulse Duration	CLK high or low	3.2		3.2		3.0		
	B Data before CLK↑	1.5		1.2		1.1		
t _{SU} Setup time	SEL before CLK↑	2.7		2.4		2.1		ns
,	CLKENBA before CLK↑	2.7		2.6		2.0		
	B Data after CLK↑	1.0		0.6		1.2		
t _H Hold time	SEL after CLK↑	0.5		0.2		0.8		
	CLKENBA after CLK↑	0.1		0.1		0.3		

Switching Characteristics Over Operating Range $^{(1)}$

Danamatana	From	То	V _{CC} = 2.5	$V \pm 0.2V$	V _{CC} =	2.7V	$V_{\rm CC}=3.$	$3V \pm 0.V$	I In:4a
Parameters	(Input)	(Output)	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Units
f _{MAX}			120		125		150		MHz
t _{PD}	A	В		4.1		3.9		3.7	
t _{PD}	CLK	A		6.5		6.3		5.7	
t_{EN}	OEAB or OEBA	A or B	1.0	6.1		6.1	1.0	5.1	ns
t _{DIS}	OEAB or OEBA	A or B		6.3		5.4		4.9	

Notes:

- 1. See test circuit and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.

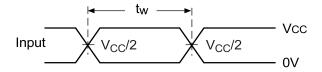
Operating Characteristics, $T_A = 25^{\circ}C$

Paramete	Parameter		$V_{\rm CC} = 2.5 V \pm 0.2 V$ Typi	$V_{CC} = 3.3V \pm 0.3V$	Units
C _{PD} Power Dissipation	Outputs Enabled	$C_{\rm L} = 50 {\rm pF}$	16	.0	pF
Capacitance	Outputs Disabled	f= 10 MHz		00	pr

5

Parameter Measurement Information

......


 $V_{CC} = 2.5V \pm 0.2V$

Load Circuit

Test	S1
t _{pd}	Open
t _{PLZ} /t _{PZL}	2 x V _{CC}
t _{PHZ} /t _{PZH}	GND

Voltage Waveforms Setup and Hold Times

Voltage Waveforms Pulse Duration

Voltage Waveforms Enable and Disable Times

Voltage Waveforms Propagation Delay Times

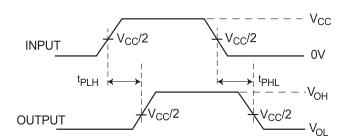


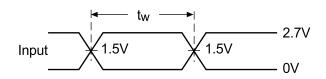
Figure 1. Load Circuit and Voltage Waveforms

Notes:

- **A.** CL includes probe and jig capacitance.
- **B.** Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All inputs pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50\Omega$, $t_r \leq 2$ ns, $t_f \leq 2$ ns.

6

- **D.** The outputs are measured one at a time with one transition per measurement.
- **E.** t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- **F.** t_{PZL} and t_{PZH} are the same as t_{ten} .
- **G.** t_{PLH} and t_{PHL} are the same as t_{pd} .


Parameter Measurement Information $V_{CC} = 2.7V$ and $3.3V \pm 0.3V$

Load Circuit

Test	S1
t _{pd}	Open
t _{PLZ} /t _{PZL}	6V
t _{PHZ} /t _{PZH}	GND

Voltage Waveforms Setup and Hold Times

Voltage Waveforms Pulse Duration

Voltage Waveforms Enable and Disable Times

Voltage Waveforms Propagation Delay Times

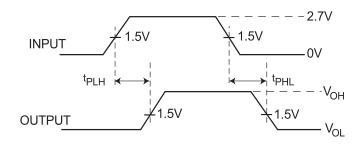


Figure 2. Load Circuit and Voltage Waveforms

Notes:

- A. CL includes probe and jig capacitance.
- **B.** Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All inputs pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50\Omega$, $t_r \leq$ 2 ns, $t_f \leq$ 2 ns.
- **D.** The outputs are measured one at a time with one transition per measurement.
- **E.** t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- **F.** t_{PZL} and t_{PZH} are the same as t_{ten} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com