

PI74ALVCH162827

20-Bit Buffer Driver with 3-STATE Outputs

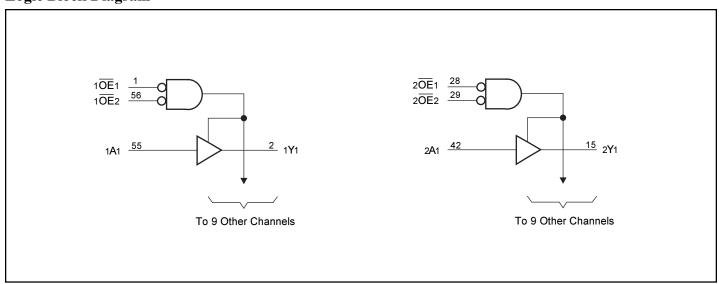
Product Features

- PI74ALVCH162827 is designed for low voltage operation
- $V_{CC} = 2.3 \text{V to } 3.6 \text{V}$
- Hysteresis on all inputs
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at $V_{CC} = 3.3 \text{V}$, $T_A = 25^{\circ}\text{C}$
- Typical V_{OHV} (Output V_{OH} Undershoot) < 2.0 V at $V_{CC} = 3.3 \text{V}$, $T_A = 25 ^{\circ}\text{C}$
- Output ports have equivalent 26Ω series resistors; no external resistors are required
- Bus Hold retains last active bus state during 3-STATE, eliminating the need for external pullup resistors
- Industrial operation at -40°C to +85°C
- Packages available:
 - 56-pin 240 mil wide plastic TSSOP (A)
 - 56-pin 300 mil wide plastic SSOP (V)

Product Description

Pericom Semiconductor's PI74ALVCH series of logic circuits are produced in the Company's advanced 0.5 micron CMOS technology, achieving industry leading speed.

The PI74ALVCH162827 is a 20-bit non-inverting buffer/driver designed for 2.3V to 3.6V V_{CC} operation.


The buffer/driver is composed of two 10-bit sections with separate output-enable signals. For either 10-bit buffer section, the two output-enable ($1\overline{OE}1$ and $1\overline{OE}2$ or $2\overline{OE}1$ and $2\overline{OE}2$) inputs must both be low for the corresponding Y outputs to be active. If either output-enable input is HIGH, the outputs of that 10-bit buffer section are in the high-impedance state.

The outputs, which are designed to sink up to 12mA, include 26Ω resistors to reduce overshoot and undershoot.

To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The PI74ALVCH162827 has "Bus Hold" which retains the data input's last state whenever the data input goes to high-impedance preventing "floating" inputs and eliminating the need for pullup/ down resistors.

Logic Block Diagram

Product Pin Description

Pin Name	Description
ŌĒ	Output Enable Input (Active LOW)
Ax	Data Inputs
Yx	3-State Outputs
GND	Ground
V _{CC}	Power

Truth Table⁽¹⁾

	Outputs		
ŌE1	OE2	A	Y
L	L	L	L
L	L	Н	Н
Н	X	X	Z
X	Н	X	Z

Notes:

2

- 1. H = High Signal Level
 - L = Low Signal Level
 - X = Don't Care or Irrelevant
 - Z = High Impedance

Product Pin Configuration

10E1	□ 1		56	1OE2
1Y 1	2		55 🗆	1A1
1Y2	□ 3		54	1A2
GNE	□ 4		53	GND
1 Y \$	□ 5		52	1A3
1Y4	□ 6		51	1A4
VCC	□ 7	56-PIN	50	VCC
1Yŧ	□ 8	V56	49	1A5
1 Y €	□ 9	A56	48	1A6
1Y7	□ 10		47	1A7
GNE	□ 11		46	GND
1 Y {	□ 12		45	1A8
1 Y {	□ 13		44	1A9
1Y1(□ 14		43	1A10
2Y1	□ 15		42	2A1
2Y2	□ 16		41	2A2
2Y3	□ 17		40	2A3
GNE	□ 18		39	GND
2Y4	□ 19		38 🗆	2A4
2Y!	□ 20		37	2A5
2Y6	□ 21		36	2A6
VCC	□ 22		35 🗆	VCC
2Y7	□ 23		34	2A7
2Y{	□ 24		33 🗆	2A8
GNE	□ 25		32	GND
2Y!	□ 26		31	2A9
2 <u>Y1</u> (□ 27		30	2 <u>A1</u> 0
20E1	□ 28		29	2OE2

PS8095B 10/07/98

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Ambient Temperature with Power Applied	40°C to +85°C
Input Voltage Range, VIN	0.5V to V _{CC} +4.6V
Output Voltage Range, VOUT	0.5V to V _{CC} +0.5V
DC Input Voltage	
DC Output Current	50 mA
Power Dissipation	1.0W

Note

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{CC} = 3.3\text{V} \pm 10\%$)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
V _{CC}	Supply Voltage		2.3		3.6	
V _{IH} ⁽³⁾	I MOHALL	$V_{CC} = 2.3 \text{V to } 2.7 \text{V}$	1.7			
VIH	Input HIGH Voltage	$V_{\rm CC} = 2.7 \text{V to } 3.6 \text{V}$	2.0			
V _{IL} (3)	Innut I OW Voltage	$V_{\rm CC} = 2.3 \text{V to } 2.7 \text{V}$			0.7	
VIII.	Input LOW Voltage	$V_{CC} = 2.7V \text{ to } 3.6V$			0.8	
V _{IN} (3)	Input Voltage		0		V _{CC}	
V _{OUT} ⁽³⁾	Output Voltage		0		V_{CC}	
		I_{OH} = -100 μ A, V_{CC} = Min. to Max.	V _{CC} -0.2			
		$V_{IH} = 1.7V$, $I_{OH} = -4mA$, $V_{CC} = 2.3V$	1.9			V
V _{OH}	Output HIGH	$V_{IH} = 1.7V$, $I_{OH} = -6mA$, $V_{CC} = 2.3V$	1.7			V
	Voltage	$V_{IH} = 2.0V$, $I_{OH} = -6mA$, $V_{CC} = 2.7V$	2.4			
		$V_{IH} = 2.0V$, $I_{OH} = -8mA$, $V_{CC} = 3.0V$	2.0			
		$V_{IH} = 2.0V$, $I_{OH} = -12mA$, $V_{CC} = 3.0V$	2.0			
	Output LOW Voltage	I_{OL} = 100 μ A, V_{IL} = Min. to Max.			0.2	
		$V_{IL} = 0.7V$, $I_{OL} = 4mA$, $V_{CC} = 2.3V$			0.4	
V _{OL}		$V_{IL} = 0.7V$, $I_{OL} = 6mA$, $V_{CC} = 2.3V$			0.55	
	vollage	$V_{IL} = 0.8V$, $I_{OL} = 6mA$, $V_{CC} = 2.7V$			0.55	
		$V_{IL} = 0.8V$, $I_{OL} = 12mA$, $V_{CC} = 3.0V$			0.8	
	Output HIGH Current	$V_{\rm CC} = 2.3 V$			-6	
I _{OH} ⁽³⁾		$V_{CC} = 2.7V$			-8	
		$V_{CC} = 3.0V$			-12	
(0)	Output LOW Current	$V_{CC} = 2.3V$	$V_{CC} = 2.3V$		6	mA
I _{OL} (3)		V _{CC} = 2.7V			8	8
		$V_{CC} = 3.0V$			12	

3 PS8095B 10/07/98

DC Electrical Characteristics-Continued (Over the Operating Range, $T_A = -40$ °C to +85°C, $V_{CC} = 3.3V \pm 10$ %)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	
I _{IN}	Input Current	$V_{IN} = V_{CC}$ or GND, $V_{CC} = 3.6V$			±5		
		$V_{IN} = 0.7V, V_{CC} = 2.3V$	45				
	Input	$V_{IN} = 1.7V, V_{CC} = 2.3V$	-45				
IM (HOLD)	Hold Current	$V_{IN} = 0.8V, V_{CC} = 3.0V$	75				
	Current	$V_{IN} = 2.0V, V_{CC} = 3.0V$	-75				
		$V_{IN} = 0$ to 3.6V, $V_{CC} = 3.6V$			±500	μΑ	
I_{OZ}	Output Current (3-STATE Outputs)	$V_{OUT} = V_{CC}$ or GND, $V_{CC} = 3.6V$			±10		
I_{CC}	Supply Current	$V_{CC} = 3.6V$, $I_{OUT} = 0\mu A$, $V_{IN} = GND$ or V_{CC}			40		
ΔI_{CC}	Supply Current per Input @ TTL HIGH	$V_{CC} = 3.0 \text{V}$ to 3.6V One Input at V_{CC} - 0.6V Other Inputs at V_{CC} or GND			750		
C	Control Inputs	W W CND W 2.2W		3.5			
C_{I}	Data Inputs	$V_{IN} = V_{CC}$ or GND, $V_{CC} = 3.3V$		6		pF	
C_{O}	Outputs	$V_O = V_{CC}$ or GND, $V_{CC} = 3.3V$		7			

Notes:

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{CC} = 3.3V$, +25°C ambient and maximum loading.
- 3. Unused Control Inputs must be held HIGH or LOW to prevent them from floating.

Switching Characteristics over Operating Range⁽¹⁾

Parameters	From (INPUT) T	To (OUTPUT)	$V_{\rm CC}$ = 2.5V ±0.2V		$V_{\rm CC} = 2.7 V$		$V_{CC} = 3.3V \pm 0.3V$		- Units
			Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Units
t _{PD}	A	Y	1.3	4.4		4.4	1.5	3.8	
$t_{\rm EN}$	ŌĒ	Y	1.5	7.2		6.2	1.6	5.2	ns
t _{DIS}	ŌĒ	Y	2.4	5.9		5.2	1.8	4.7	
	Description								
$\Delta t/\Delta v^{(3)}$	Input Transition Rise or Fall		0	10	0	10	0	10	ns/V

Notes:

- 1. See test circuit and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. Recommended operating condition.

Operating Characteristics, $T_A = 25^{\circ}C$

Parameter		Test Conditions	$V_{CC} = 2.5V \pm 0.2V$	$V_{CC} = 3.3V \pm 0.3V$	Units
		Test Conditions	Ту		
C _{PD} Power Dissipation	Outputs Enabled	$C_{L} = 50 \text{pF}, f = 10 \text{ MHz}$	16	18	рF
Capacitance	Outputs Disabled	CL - 30pr, 1 - 10 WHZ	4	6	pr

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com