

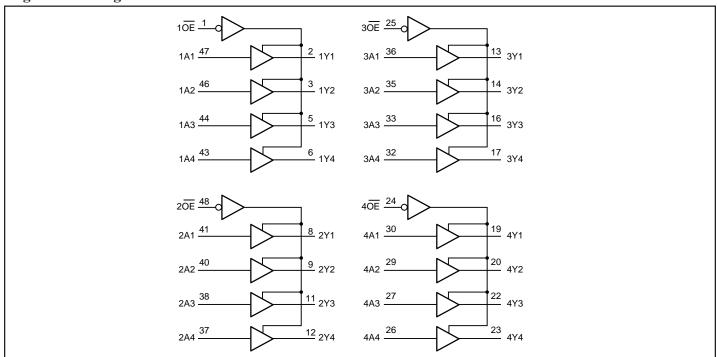


# 3.3V 16-Bit Buffer/Line Driver with 3-State Outputs

#### **Product Features**

- Advanced low power CMOS design for 2.7V to 3.6V  $V_{CC}$  operation
- · Supports 5V input/output tolerance in mixed signal mode operation
- · Function compatible with LVT family of products
- · Balanced ±24mA output drive
- $\label{eq:control_output} \begin{array}{l} \cdot \ \, \text{Typical V}_{OLP} \, (\text{Output Ground Bounce}) \\ < 0.8 V \, \text{at V}_{CC} = 3.3 V, \, T_A = 25 ^{\circ} C \end{array}$
- · Ioff and Power Up/Down 3-State support live insertion
- · Latch-up performance exceeds 200mA Per JESD78
- · ESD protection exceeds JESD 22
  - 2000V Human-Body Model (A114-B)
  - 200V Machine Model (A115-A)
- · Available Packages (Pb-free available):
  - 48-pin 240-mil wide plastic TSSOP (A48)
  - 48-pin 300-mil wide plastic SSOP (V48)
- · Industrial Temperature: -40°C to +85°C

#### **Product Description**


Pericom Semiconductor's PI74LVTC series of logic circuits are produced using the Company's advanced CMOS technology, achieving industry leading speed.

The PI74LVTC16244 is a non-inverting 16-bit buffer and line driver designed for low-voltage 2.7V to 3.6V V<sub>CC</sub> operation, with the capability of interfacing to the 5V system environment. This buffer/driver is designed specifically to improve both the performance and density of 3-State memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer.

When  $V_{CC}$  is between 0 to 1.5V during power up or power down, the device is in the high-impedance state. To ensure the high-impedance state above 1.5V,  $\overline{OE}$  should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current sinking capability of the driver.

The device fully supports live-insertion with its  $I_{\rm off}$  and power-up/down 3-state. The  $I_{\rm off}$  circuitry disables the outputs when the power is off, preventing the backflow of damaging current through the device. Power-up/down 3-state places the outputs in the high-impedance state during power up or power down, preventing driver conflict.

## **Logic Block Diagram**



1



### **Maximum Ratings**

(Above which the useful life may be impaired. For user guidelines, not tested.)

| Supply voltage range, V <sub>CC</sub> –0.5V to +6.5V              |
|-------------------------------------------------------------------|
| Input voltage range, $V_I^{(1)}$ $-0.5V$ to $+6.5V$               |
| Voltage range applied to any output in the                        |
| high-impedance or power-off state, $V_0^{(1)}$ $-0.5V$ to $+6.5V$ |
| Voltage range applied to any output in the                        |
| active state, $V_O^{(1),(2)}$                                     |
| Input clamp current, I <sub>IK</sub> (V <sub>I</sub> <0)–50mA     |
| Output clamp current, I <sub>OK</sub> (V <sub>O</sub> <0)–50mA    |
| Continous Output Current I <sub>O</sub> ±50mA                     |
| Continous Current through each VCC or GND pin±100mA               |
| Package thermal impedance, θ <sub>JA</sub> (3): package A 104°C/W |
| package V 94°C/W                                                  |
| Storage Temperature range, T <sub>stg</sub> 65°C to 150°C         |

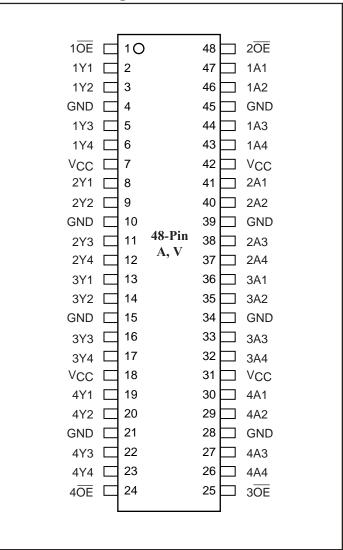
#### **Notes:**

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

- 1. Input negative-voltage and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 2. This value is limited to 6.5V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

## Truth Table<sup>(4)</sup>

| Inp             | Outputs |     |
|-----------------|---------|-----|
| x <del>OE</del> | xAx     | xYx |
| L               | Н       | Н   |
| L               | L       | L   |
| Н               | X       | Z   |


#### **Notes:**

- 4. H = High Signal Level
  - L = Low Signal Level
  - X = Don't Care or Irrelevant
  - Z = High Impedance

#### **Product Pin Description**

| Pin Name        | Description                               |  |  |  |  |
|-----------------|-------------------------------------------|--|--|--|--|
| х <del>ОЕ</del> | 3-State Output Enable Inputs (Active LOW) |  |  |  |  |
| xAx             | Inputs                                    |  |  |  |  |
| xYx             | 3-State Outputs                           |  |  |  |  |
| GND             | Ground                                    |  |  |  |  |
| V <sub>CC</sub> | Power                                     |  |  |  |  |

## **Product Pin Configuration**



05/19/03



## **Recommended Operating Conditions**<sup>(5)</sup>

|                                                        |                                          | Min. | Max.            | Units |  |
|--------------------------------------------------------|------------------------------------------|------|-----------------|-------|--|
| V <sub>CC</sub> Supply Voltage                         | Operating                                | 2.7  | 3.6             |       |  |
| V <sub>IH</sub> High-level Input Voltage               | $V_{CC} = 2.7V \text{ to } 3.6V$         | 2.0  |                 |       |  |
| V <sub>IL</sub> Low-level Input Voltage                | $V_{CC} = 2.7V \text{ to } 3.6V$         |      | 0.8             |       |  |
| V <sub>I</sub> Input Voltage                           |                                          | 0    | 5.5             | V     |  |
| V <sub>O</sub> Output Voltage                          | High or Low State                        | 0    | V <sub>CC</sub> |       |  |
|                                                        | 3-State                                  | 0    | 5.5             |       |  |
| I <sub>OH</sub> High-level output current              | $V_{CC} = 2.7V$                          |      | -12             |       |  |
|                                                        | $V_{CC} = 3.0 \text{V to } 3.6 \text{V}$ |      | - 24            |       |  |
|                                                        | $V_{\rm CC} = 2.7 V$                     |      | 12              | mA    |  |
| I <sub>O</sub> L Low-level output current              | $V_{CC} = 3.0 \text{V to } 3.6 \text{V}$ |      | 24              |       |  |
| $\Delta t/\Delta v$ Input transition rise or fall rate |                                          |      | 10              | ns/V  |  |
| $\Delta t/\Delta V_{CC}$ Power-up ramp rate            |                                          | 150  |                 | μs/V  |  |
| T <sub>A</sub> Operating free-air temperature          |                                          | - 40 | +85             | °C    |  |

#### Notes:

<sup>5.</sup> All unused inputs must be held at  $V_{CC}$  or GND to ensure proper device operation.



## **DC Electrical Characteristics** (Over the Operating Range, $T_A = -40$ °C to +85°C)

| Parameters                                     | Description                         | Test Conditions                  |                                                                         | Min. | Max.  | Units |
|------------------------------------------------|-------------------------------------|----------------------------------|-------------------------------------------------------------------------|------|-------|-------|
| V <sub>IK</sub>                                | Clamp Diode Voltage                 | $V_{CC} = 2.7V$                  | $I_{\rm I} = -18 {\rm mA}$                                              |      | -1.2V |       |
|                                                |                                     | $V_{CC} = 2.7V \text{ to } 3.6V$ | $I_{OH} = -100 \mu A$                                                   |      |       |       |
| N/                                             | Output High Voltage                 | $V_{CC} = 2.7V$                  | $I_{OH} = -12mA$                                                        | 2.2  |       |       |
| $V_{OH}$                                       |                                     | $V_{CC} = 3V$                    | $I_{OH} = -12mA$                                                        | 2.4  |       |       |
|                                                |                                     | VCC - 3V                         | $I_{OH} = -24 \text{mA}$                                                | 2.2  |       | V     |
|                                                |                                     | $V_{CC} = 2.7V \text{ to } 3.6V$ | $I_{OL} = 100 \mu A$                                                    |      | 0.2   |       |
| W                                              | Outsut I am Valtaga                 | $V_{CC} = 2.7V$                  | $I_{OL} = 12mA$                                                         |      | 0.4   |       |
| V <sub>OL</sub>                                | Output Low Voltage                  | N. AV                            | $I_{OL} = 12mA$                                                         |      | 0.4   |       |
|                                                |                                     | $V_{CC} = 3V$                    | $I_{OL} = 24 \text{mA}$                                                 |      | 0.55  |       |
| II                                             | Input Leakage Current               | $V_{CC} = 0V$ to 3.6V            | $V_{\rm H}$ = 0V to 5.5V                                                |      | ±5    |       |
| I <sub>OFF</sub>                               | Power Off Output Leakage<br>Current | $V_{CC} = 0V$                    | $V_{T}$ or $V_{O} = 0V$ to 5.5V                                         |      | ±5    |       |
| $I_{OZ}$                                       | 3-State Output Leakage<br>Current   | $V_{CC} = 2.7V \text{ to } 3.6V$ | $V_{\rm O} = 0$ V to 5.5V,                                              |      | ±5    |       |
| I <sub>OZPU</sub>                              | Power-Up 3-State Current            | $V_{CC} = 0V \text{ to } 1.5V$   | $V_O = 0.5V$ to 5.5V,<br>OE = don't care                                |      | ±5    | μA    |
| I <sub>OZPD</sub>                              | Power-Down 3-State<br>Current       | $V_{CC} = 1.5 V \text{ to } 0 V$ | $V_{\rm O} = 0.5 \text{V}$ to 5.5V, ${\rm OE} = {\rm don't}$ care       |      | ±5    | '     |
| I <sub>CC</sub> Quiescent Power Supply Current | Ouiescent Power Supply              | $V_{\rm I} = V_{\rm CC}$ or GND  | 100                                                                     | 100  |       |       |
|                                                |                                     | $V_{CC} = 2.7V \text{ to } 3.6V$ | $3.6V \le V_I \le 5.5V$ $I_O = 0$                                       |      | 100   |       |
| ΔI <sub>CC</sub>                               | Increase in I <sub>CC</sub>         | $V_{CC} = 2.7V \text{ to } 3.6V$ | One input at $V_{CC}$ - $0.6V^{(6)}$<br>Other inputs at $V_{CC}$ or GND |      | 100   |       |

Notes:

4

<sup>6.</sup> This is the increase in supply current for each input that is at the specified TTL voltage level rather than  $V_{CC}$  or GND.



## Capacitance

| Parameters       | Description                       | Test Conditions                                       | <b>Typ.</b> <sup>(7)</sup> | Units |
|------------------|-----------------------------------|-------------------------------------------------------|----------------------------|-------|
| $C_{\mathrm{I}}$ | Input Capacitance                 | $V_{CC} = 3.3V$ , $V_{I} = V_{CC}$ or GND             | 3.7                        |       |
| Co               | Output Capacitance                | $V_{CC} = 3.3V$ , $V_{O} = V_{CC}$ or GND             | 7                          | pF    |
| C <sub>PD</sub>  | Power Dissipation Capacitance (8) | $V_{CC} = 3.3V$ , $V_I = 0V$ or $V_{CC}$ , $f=10$ MHz | 15                         | 1     |

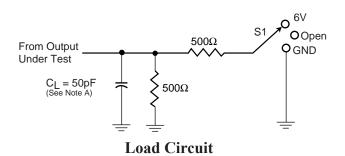
#### **Notes:**

- 7. All typical values are measured at VCC = 3.3V, TA = 25°C.
- 8. C<sub>PD</sub> is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current sumption (I<sub>CCD</sub>) at no output loading and operating at 50% duty cycle, C<sub>PD</sub> is related to I<sub>CCD</sub> dynamic operating expression: I<sub>CCD</sub>= (C<sub>PD</sub>)(V<sub>CC</sub>)(f<sub>IN</sub>)+(I<sub>CC</sub>static)

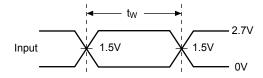
concurrent by the

## **Switching Characteristics Over Operating Range**

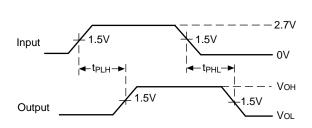
|                    |                                       | (Inniir) - |    | $V_{CC} = 3.3V \pm 0.3V$ |          | V <sub>CC</sub> = 2.7V |                 |       |     |                               |       |     |     |  |     |
|--------------------|---------------------------------------|------------|----|--------------------------|----------|------------------------|-----------------|-------|-----|-------------------------------|-------|-----|-----|--|-----|
| Parameters         | Description                           |            |    | _                        | (Outpu-  | $C_L = 50$             | $0pF, R_L = 50$ | 000hm |     | 0pF, R <sub>L</sub> =<br>0Ohm | Units |     |     |  |     |
|                    |                                       |            |    | Min.                     | Тур. (9) | Max.                   | Min.            | Max.  |     |                               |       |     |     |  |     |
| t <sub>PLH</sub>   | Propagation Delay                     | A          | Y  | 1.0                      | 2.5      | 3.4                    |                 | 3.8   |     |                               |       |     |     |  |     |
| tPHL               | Fropagation Delay                     | A          | Y  | 1.0                      | 2.5      | 3.4                    |                 | 3.8   |     |                               |       |     |     |  |     |
| t <sub>PZH</sub>   | Output English Times                  | ŌĒ         | ŌE | Y                        | 1.0      | 2.9                    | 4.2             |       | 5.0 |                               |       |     |     |  |     |
| t <sub>PZL</sub>   | Output Enable Time                    |            |    |                          | Y        | 1.0                    | 3.0             | 4.2   |     | 5.0                           | ns    |     |     |  |     |
| tPHZ               | Outrout Disable Time                  | OE         | Y  | 1.0                      | 2.5      | 4.0                    |                 | 4.7   |     |                               |       |     |     |  |     |
| $t_{\rm PLZ}$      | Output Disable Time                   |            | OL | OE                       | OE .     | OE                     | OE              | OE    | OE  | I                             | 1.0   | 2.4 | 3.9 |  | 4.3 |
| t <sub>SK(O)</sub> | Output to Output Skew <sup>(10)</sup> |            |    |                          |          | 0.5                    |                 |       |     |                               |       |     |     |  |     |


5

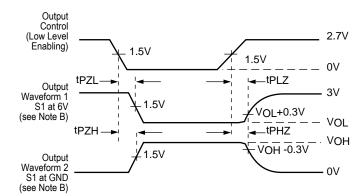
### **Notes:**


- 9. All typical values are measured at VCC = 3.3V, TA = 25°C.
- 10. Skew between any two outputs, switching in the same direction.




## PARAMETER MEASUREMENT INFORMATION $V_{CC}$ = 2.7V and 3.3V ±0.3V




| Test      | S1   |
|-----------|------|
| tplH/tpHL | Open |
| tpLZ/tpZL | 6V   |
| tpHZ/tpZH | GND  |



Voltage Waveforms Pulse Duration



Voltage Waveforms Propagation Delay Times

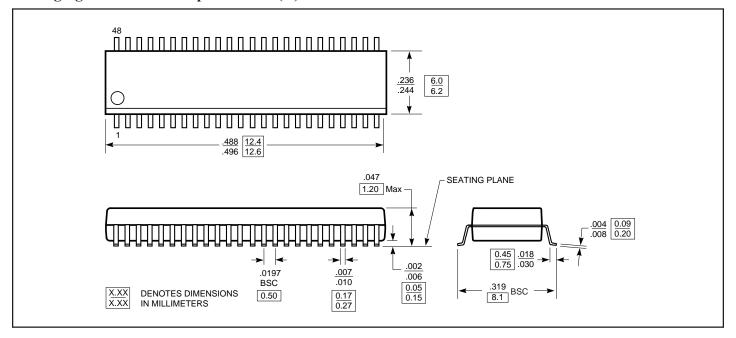


Voltage Waveforms Enable and Disable Times

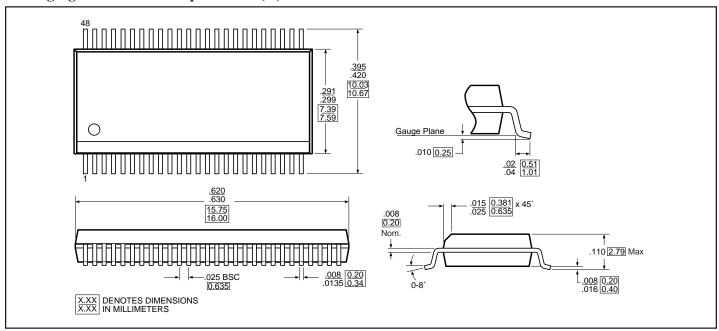
Figure 1. Load Circuit and Voltage Waveforms

#### **Notes:**

- A. C<sub>L</sub> includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input impulses are supplied by generators having the following characteristics: PRR £ 10 MHz, Z<sub>O</sub> = 50W, t<sub>R</sub> £ 2.5ns, t<sub>F</sub> £ 2.5ns.


6

D. The outputs are measured one at a time with one transition per measurement.


PS8652A 05/19/03



## Packaging Mechanical: 48-pin TSSOP (A)



## Packaging Mechanical: 48-pin SSOP (V)



7



## **Ordering Information**

| Ordering Code   | Package Code | Package Type                                    |
|-----------------|--------------|-------------------------------------------------|
| PI74LVTC16244A  | A            | 48-pin, 240-mil wide plastic TSSOP (A)          |
| PI74LVTC16244AE | A            | Pb-free, 48-pin, 240-mil wide plastic TSSOP (A) |
| PI74LVTC16244V  | V            | 48-pin, 300-mil wide plastic SSOP (V)           |
| PI74LVTC16244VE | V            | Pb-free, 48-pin, 300-mil wide plastic SSOP (V)  |

- 1. Thermal characteristics can be found on the company web site at http://www.pericom.com/packaging/mechanicals.php
- 2. X = Tape/Reel

PS8652A 05/19/03