

Low-Noise Phase-Locked Loop Clock Driver with 9 Clock Outputs

Product Features

- Operating Frequency up to 150 MHz
- Low-Noise Phase-Locked Loop Clock Distribution to meet 133 MHz Registered DIMM Synchronous DRAM module specifications for server/workstation/PC applications
- Allows Clock Input to have Spread Spectrum modulation for EMI reduction
- Zero input-to-output delay: Distribute One Clock Input to one bank of five and one bank of four outputs, with separate output enables
- Low jitter: cycle-to-cycle jitter ±75ps max.
- 30-ohm on-chip series damping resistor at clock output drivers for low noise and EMI reduction
- Operates at 3.3V V_{CC}
- · Package:

Plastic 24-pin TSSOP(L)

Product Description

The PI6C2509-133 is a "quiet," low-skew, low-jitter, phase-locked loop (PLL) clock driver, distributing low-noise clock signals for SDRAM and server applications. By connecting the feedback FB_OUT output to the feedback FB_IN input, the propagation delay from the CLK_IN input to any clock output will be nearly zero. This zero-delay feature allows the CLK_IN input clock to be distributed, providing 5 clocks for the first bank, and an additional 4 clocks for the second bank.

This clock driver is designed to meet the PC133 SDRAM Registered DIMM specification. For test purposes, the PLL can be bypassed by strapping AV_{CC} to ground.

Logic Block Diagram

Product Pin Configuration

1

PS8544 07/18/01

Functional Table

Input Control	Outputs		
X ⁽¹⁾ G	X ⁽¹⁾ Y[0:3]	FB_OUT	
L	L	CLK_IN	
Н	CLK_IN	CLK_IN	

Note:

1. X is either 1 or 2

Pin Functions

i iii i uncuo	1	i	
Pin Name	Pin No.	Type	Description
CLK_IN	24	I	Clock input. CLK_IN allows spread spectrum.
FB_IN	13	I	Feedback input. FB_IN provides the feedback signal to the internal PLL.
1G	11	I	Output bank enable. When 1G is LOW, outputs 1Y[0:4] are disabled to a logic low state. When 1G is HIGH, all outputs 1Y[0:4] are enabled.
2G	14	I	Output bank enable. When 2G is LOW, outputs 2Y[0:3] are disabled to a logic low state. When 2G is HIGH, all outputs 2Y[0:3] are enabled.
FB_OUT	12	О	Feedback output. FB_OUT is dedicated for external feedback. FB_OUT has an embedded series-damping resistor of the same value as the clock outputs 1Yx, 2Yx.
1Y[0:4]	3,4,5,8,9	О	Clock outputs. These outputs provide low-skew copies of CLK_IN. Each output has an embedded series-damping resistor.
2Y[3:0]	16,17, 20, 21	О	Clock outputs. These outputs provide low-skew copies of CLK_IN. Each output has an embedded series-damping resistor.
AV_{CC}	23	Power	Analog power supply. AV_{CC} can be also used to bypass the PLL for test purposes. When AV_{CC} is strapped to ground, PLL is bypassed and CLK_IN. is buffered directly to the device outputs.
AGND	1	Ground	Analog ground. AGND provides the ground reference for the analog circuitry.
V _{CC}	2,10,15,22	Power	Power supply.
GND	6,7,18,19	Ground	Ground.

DC Specifications (Absolute maximum ratings over operating free-air temperature range)

Symbol	Parameter	Min.	Max.	Units
$V_{\rm I}$	Input voltage range		V	
V_{O}	V _O Output voltage range		$V_{CC} + 0.5$	V
V _I _DC	DC input voltage		+5.0	
I _O _DC	DC output current		100	mA
Power	Power Maximum power dissipation at $T_A = 55$ °C in still air		1.0	W
$T_{ m STG}$	Storage temperature	-65	150	°C

Note:

Stress beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

Parameter	Test Conditions	V _{CC}	Min.	Тур.	Max.	Units
I_{CC}	$V_{\rm I} = V_{\rm CC}$ or GND; $I_{\rm O} = 0^{(1)}$	3.6V			10	μΑ
C _I	$V_I = V_{CC}$ or GND	2.27/		4		E
C _O	$V_O = V_{CC}$ or GND	3.3V		6		pF

Note:

Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
$V_{\rm CC}$	Supply voltage (Commercial)	3.0	3.6	
	Supply voltage (Industrial)	3.135	3.465	
$V_{ m IH}$	High level input voltage	2.0		V
V _{IL}	Low level input voltage		0.8	
$V_{\rm I}$	Input voltage	0.0	V_{CC}	
$T_{\mathbf{A}}$	Operating free-air temperature (Commercial)	0	70	90
	Operating free-air temperature (Industrial)	-40	85	°C

Electrical Characteristics (Over recommended operating free-air temperature range)

Pull Up/Down Currents of PI6C2509-133, V_{CC} = 3.0V (V_{CC} = 3.135V)

Symbol	Parameter	Condition	Min.	Max.	Units
T	Pull-up current	$V_{OUT} = 2.4V$		-13.6	
I _{OH}	Pull-up current	$V_{OUT} = 2.0V$		-22	_
T	Pull-down current	$V_{OUT} = 0.8V$	19		mA
I_{OL}	Pull-down current	$V_{OUT} = 0.55V$	13		

3

^{1.} Continuous output current

AC Specifications

(Timing requirements over recommended ranges of supply voltage and operating free-air temperature.)

Symbol	Parameter	Min.	Max.	Units	
F _{CLK}	Input clock frequency (Commercial)	25	150	MHz	
	Input clock frequency (Industrial)	25	125	MHz	
	Input clock duty cycle	40	60	%	
	Stabilization time after power up		1	ms	

Switching Characteristics

(Over recommended ranges of supply voltage and commercial temperature, $V_{CC}=3.3V\pm0.3V$, $T_A=0\sim70^{\circ}C$, $C_L=15pF$)

Parameter	Test Conditions	Min.	Тур.	Max.	Units
t _{pe} , Phase error	CLK_IN to FB_IN, f = 133 MHz	-150		150	
t _j , Jitter (cycle-to-cycle)	f= 133 MHz	-75		75	ps
t _{sk} , Output skew	Yn or FB_OUT to Yn or FB_OUT			150	
t _{dc} , Duty cycle	$f = 133 \text{ MHz}, V_{CC}/2$	45	50	55	%
t _r , Rise time	$V_{\rm O} = 0.4 \rm V$ to $2 \rm V$		1.0		1 10
t _f , Fall time	$V_O = 2V$ to $0.4V$		1.1		ns

Switching characteristics

(Over recommended ranges of supply voltage and industrial temperature, $V_{CC}=3.3V\pm0.165V$, $T_A=-40\sim85^{\circ}C$, $C_L=15pF$)

Parameter	Test Conditions	Min.	Тур.	Max.	Units
t _{pe} , Phase error	CLK_IN to FB_IN, f = 125 MHz	-150		150	
t _j , Jitter (cycle-to-cycle)	f = 125 MHz	-75		75	ps
t _{sk} , Output skew	Yn or FB_OUT to Yn or FB_OUT			150	
t _{dc} , Duty cycle	$f = 125 \text{ MHz}, V_{CC}/2$	45	50	55	%
t _r , Rise time	$V_O = 0.4 V$ to $2V$		1.0		***
t _f , Fall time	$V_O = 2V$ to $0.4V$		1.1		ns

4

Note: These switching parameters are guaranteed, but not production tested.

PS8544 07/18/01

24-pin Plastic Thin Shrink Small-Outline Package (L)

Ordering Information

Part Number	Operating Frequency Range	Ordering P/N	
PI6C2509-133	25 MHz -150 MHz	PI6C2509-133L	

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com