

18-Bit Universal Bus Driver with 3-State Outputs

Product Features

- Very high-speed, low-noise universal bus driver with embedded resistor outputs
- Meets PC133 SDRAM Registered DIMM specification
- Implements output impedance control for low-noise and heavy-load applications
- Fast Propagation Delay: 2.5ns max. for 50pF test load
- $V_{CC} = 3.3V \text{ or } 2.5V \text{ or } 1.8V$
- Packages available:
 - -56-pin 240 mil wide plastic TSSOP (A)
 - -56-pin 173 mil wide plastic TVSOP (K)

Product Pin Configuration

NC	[1		56	GND
NC	□ 2		55 🗆	NC
Y1	□ 3		54	A1
GND	□ 4		53 🗆	GND
Y2	□ 5		52	A2
Y3	□ 6		51 🗆	A3
Vcc	□ 7		50	VCC
Y4	□ 8		49 🗆	A4
Y5	□ 9		48 🗆	A5
Y6	□ 10		47	A6
GND	□ 11		46	GND
Y7	□ 12		45 🗆	A7
Y8	□ 13	56-Pin	44	A8
Y9	□ 14	A56	43	A9
Y10	□ 15	K56	42	A10
Y11	□ 16		41	A11
Y12	□ 17		40 🗆	A12
GND	□ 18		39 🗆	GND
Y13	□ 19		38 🗆	A13
Y14	□ 20		37	A14
Y15	□ 21		36	A15
Vcc	□ 22		35 🗆	VCC
Y16	□ 23		34	A16
Y17	□ 24		33	A17
GND	□ 25		32	GND
Y18	□ 26		31	A18
ŌĒ	□ 27		30	CLK
LE	□ 28		29	GND

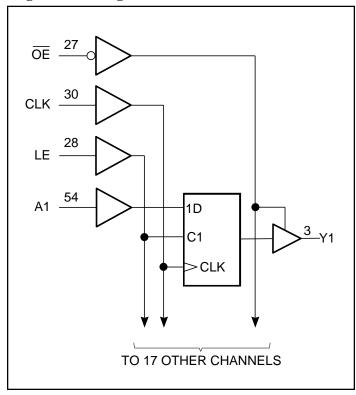
Product Description

Pericom Semiconductor's PI74AVC series of logic circuits are produced using the Company's advanced 0.35 micron CMOS technology, achieving industry leading speed.

The 18-bit PI74AVC16835 universal bus driver is designed for 1.8V to 3.6V Vcc operation.

Data flow from A to Y is controlled by Output Enable (\overline{OE}). The device operates in the transparent mode when LE is HIGH. The A data is latched if CLK is held at a high or low logic level. If LE is LOW, the A-bus is stored in the latch/flip-flop on the low-to-high transition of CLK. When \overline{OE} is HIGH, the outputs are in the highimpedance state.

The PI74AVC16835 bus driver is designed to drive an array of 133 MHz synchronous memory chips, with minimal undershoot/ overshoot noise, and to meet the input signal rise/fall time requirement of memory chips.


The output drivers of this part have an embedded series-resistor. For DIMM module design, no external series termination resistors near the buffer drivers or any other termination resistors are required. This feature simplifies DIMM module layout design, and results in cost savings.

PS8373D 08/03/99

1

Logic Block Diagram

Product Pin Description

Pin Name	Description
ŌĒ	Output Enable Input (Active LOW)
LE	Latch Enable
CLK	Clock Input
A	Data Input
Y	Data Output
GND	Ground
Vcc	Power

Truth Table(1)

......

	Inputs						
OE	LE	CLK	A	Outputs Y			
Н	X	X	X	Z			
L	Н	X	L	L			
L	Н	X	Н	Н			
L	L	1	L	L			
L	L	1	Н	Н			
L	L	Н	X	Yo(2)			
L	L	L	X	Yo(3)			

Note:

- 1 H = High Signal Level
 - L = Low Signal Level
 - Z = High Impedance
 - ↑ = Transition LOW-to-HIGH
 - X = Irrelevant
- 2. Output level before the indicated steady-state input conditions were established, provided that CLK is HIGH before LE goes LOW.
- 3. Output level before the indicated steady-state input conditions were established.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature—65°C to +150°C
Ambient Temperature with Power Applied—40°C to +85°C
Supply Voltage Range, V _{CC} ———————————————————————————————————
Input Voltage Range, $V_I^{(1)}$ = -0.5V to +4.6V
Voltage range applied to any output in the high-impedance or power-off state, $V_0^{(1)}$ 0.5V to +4.6V
Voltage range applied to any output in the high or low state, $V_0^{(1,2)}$
Input clamp current, I_{IK} ($V_I < 0$)
Output clamp current, I_{OK} (V_O <0)
Continuous output current, I ₀ ±50mA
Continuous current through each V_{CC} or GND ± 100 mA
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$

Note:

- 1. Input and output negative voltage ratings may be exceeded if the input and output current ratings are observed.
- 2. Output positive voltage rating may be exceeded up to 4.6V maximum if the output current rating is observed.
- 3. Package thermal impedance is calculated in accordance with JESD 51.

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions(1)

Parameters	Description	Test Conditions	Min.	Max.	Units
* 7	C 1 X 1	Operating	1.65	3.6	
V_{CC}	Supply Voltage	Data Retention Only	1.2		
		$V_{CC} = 1.2V$	Vcc		
**	****	$V_{CC} = 1.65V \text{ to } 1.95V$	0.65 x Vcc		
V_{IH}	High-level Input Voltage	$V_{CC} = 2.3 V \text{ to } 2.7 V$	1.7		
		$V_{CC} = 3V \text{ to } 3.6V$	2		
		$V_{CC} = 1.2V$		GND	V
* 7	Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$V_{CC} = 1.65 V \text{ to } 1.95 V$		0.35 x Vcc	
V _{IL} L	Low-level Input Voltage	$V_{CC} = 2.3 \text{V to } 2.7 \text{V}$		0.7	
		$V_{CC} = 3V \text{ to } 3.6V$		0.8	
$V_{\rm IN}$	Input Voltage	0	3.6		
	0	Active State	0	Vcc	
V_{OUT}	Output Voltage	3-State	0	3.6	
		$V_{CC} = 1.65 \text{V to } 1.95 \text{V}$		-4	
I_{OHS}	High-level Output Current (2)	$V_{CC} = 2.3 V \text{ to } 2.7 V$		-8	
		$V_{CC} = 3V \text{ to } 3.6V$		-12	
		$V_{CC} = 1.65 V \text{ to } 1.95 V$		4	mA
I _{OLS} Lo	Low-level Output Current (2)	$V_{CC} = 2.3 V \text{ to } 2.7 V$		8	
		$V_{CC} = 3V$ to 3.6V		12	
Δt/Δv	Input transition rise or fall rate	$V_{CC} = 1.65 \text{V to } 3.6 \text{V}$		5	ns/V
T_A	Operating Free-Air Temperature		-40	85	°C

Note:

- 1. Unused control inputs must be held HIGH or LOW to prevent them from floating.
- 2. Dynamic drive is greater than standard output drive of $I_{OH} = -24 \text{mA}$ and $I_{OL} = 24 \text{mA}$

DC Electrical Characteristics (Over the Operating Range, $TA = -40^{\circ}C$ to $+85^{\circ}C$, $VCC = 3.3V \pm 10\%$)

Parameters			V _{CC} ⁽¹⁾	Min.	Typ.(2)	Max.	Units		
		$I_{OHS} = -100\mu A$	V _{IH} or V _{IL}	1.65 to 3.6	V _{CC} -0.2				
Vor		$I_{OHS} = -4mA$	$V_{IH} = 1.07V$	1.65	1.2				
V _{OH}		$I_{OHS} = -8mA$	$V_{IH} = 1.7V$	2.3	1.75				
		$I_{OHS} = -12mA$	$V_{IH} = 2V$	3.0	2.3			v	
		$I_{OLS} = 100 \mu A$	V _{IH} or V _{IL}	1.65 to 3.6			0.2	·	
Vor		$I_{OLS} = 4mA$	$V_{IL} = 0.57V$	1.65			0.45		
VOL	Vol	$I_{OLS} = 8mA$	$V_{IL} = 0.7V$	2.3			0.55		
		$I_{OLS} = 12mA$	$V_{IL} = 0.8V$	3.0			0.7		
II	Control Inputs	$V_{I} = V_{CC}$ or GND		3.6			2.5		
I _{OFF}		$V_I = 0$ or 3.6V		0			±10		
$I_{OZ}^{(3)}$		$V_{O} = V_{CC}$ or GND	$\overline{OE} = V_{CC}$	3.6			±10	μΑ	
I _{CC}		$V_{I} = V_{CC}$ or GND	$I_{O} = 0$	3.6			40		
	Control Inputs		·			4.5			
C	Control inputs	$V_{I} = V_{CC}$ or GND		3.3		4.5			
C _I Data Input	Data Input			2.5		4.0		E	
	Data Input			3.3		4.0		pF	
Co	Outputs	V V OND		2.5		6.5			
Co	Outputs	$V_{O} = V_{CC}$ or GND		3.3		6.5			

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are measured at +25°C.
- 3. For I/O ports, the I_{OZ} includes the input leakage current.

Timing Requirements over Operating Range

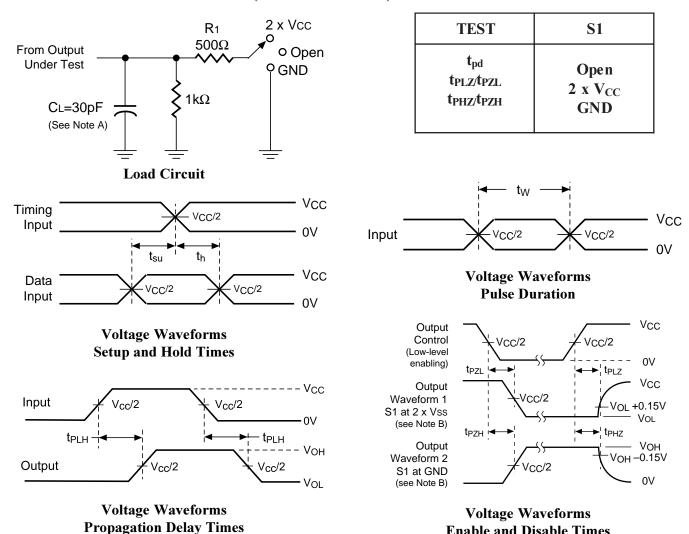
Parameters	Description	$V_{CC} = 1.8 \text{ V}$ $\pm 0.15 \text{V}$		V _{CC} = 2.5V ± 0.2V		$V_{CC} = 3.3V$ $\pm 0.3V$		Units	
		Min.	Max.	Min.	Max.	Min.	Max.		
fCLOCK	Clock Frequency		150		150		150	MHz	
t _W Pulse Duration	LE High	2.0		1.2		1.0			
	CLK High or Low	2.0		1.2		1.0			
4 C-4 4:	Data before CLK↑	1.4		1.2		1.0		na	
t _{SU} Setup time	Data before LE↓, CLK High or Low	1.4		1.2		1.0		ns	
t _H Hold time	Data after CLK↑	1.0		0.8		0.6			
	Data after LE, CLK High or Low	1.0		0.8		0.6			

5

Switching Characteristics Over Recommended Operating Free-Air Temperature Range Unless otherwise noted, see Figures 3 through 5.

Parameter	From To		$V_{CC} = 1.8V$ $\pm 0.15V$		$V_{CC} = 2.5V$ $\pm 0.2V$		$V_{CC} = 3.3V^{(1)} \pm 0.3V$		Units	
	(Input)	(Output)	Min.	Max.	Min.	Max.	Min.	Max.		
f_{max}			150		150		150		MHz	
	A		1.0	4.5	0.8	3.0	0.7	2.4		
t_{pd}	LE		1.0	5.0	0.8	3.3	0.7	2.5		
	CLK	Y	1.0	4.5	0.8	3.0	0.7	2.5	ns	
t _{en}	ŌE		1.5	5.5	1.0	4.5	1.0	4.0		
t _{DIS}	ŌĒ		1.5	5.0	1.0	4.5	1.0	4.0		

Note 1. Load at 50pF and 500 Ω .


Operating Characteristics, $T_A = 25^{\circ}C$

Parameters	Test	$V_{CC} = 1.8V$	$V_{CC} = 2.5V$	$V_{CC} = 3.3V$	Units	
rarameters		Conditions	Тур.	Тур.	Тур.	Units
C _{pd} Power dissipation	Outputs Enabled	$C_{L}=0,$	45	48	52	φE
capacitance	Outputs Disabled	f = 10 MHz	23	25	28	pF

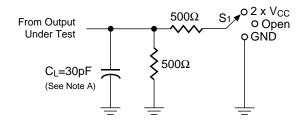
6

Parameter Measurement Information ($V_{CC} = 1.8V \pm 0.15V$)

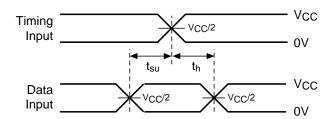
Notes:

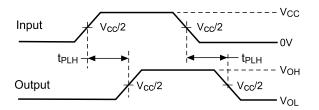
- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50\Omega$, $t_r \leq 2$ ns, $t_r \leq 2$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. tpzL and tpzH are the same as tdis.
- G. t_{PLH} and t_{PHL} are the same as t_{dis}.

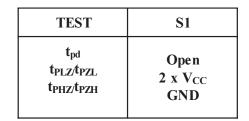
Figure 3. Load Circuit and Voltage Waveforms

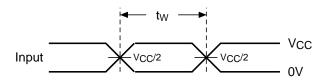

7

PS8373D 08/03/99

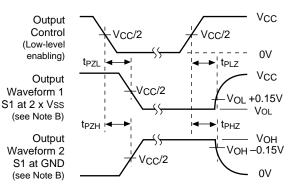

Enable and Disable Times


Parameter Measurement Information ($V_{CC} = 2.5V \pm 0.2V$)


Load Circuit



Voltage Waveforms Setup and Hold Times



Voltage Waveforms Propagation Delay Times

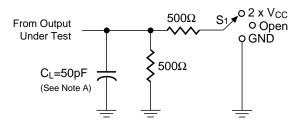
Voltage Waveforms Pulse Duration

Voltage Waveforms Enable and Disable Times

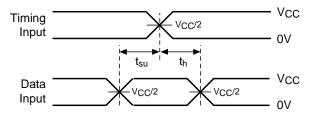
Notes:

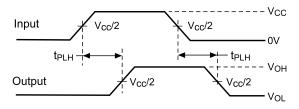
- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50\Omega$, $t_r \leq 2$ ns, $t_r \leq 2$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tplz and tpHz are the same as tdis.
- F. $t_{\mbox{\scriptsize PZL}}$ and $t_{\mbox{\scriptsize PZH}}$ are the same as $t_{\mbox{\scriptsize dis}}.$
- G. tplh and tphl are the same as tdis.

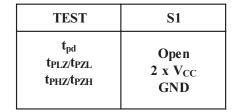
Figure 4. Load Circuit and Voltage Waveforms

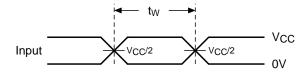

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com

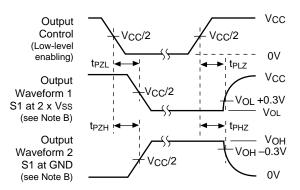

PS8373D 08/03/99


Parameter Measurement Information ($V_{CC} = 3.3V \pm 0.3V$)


Load Circuit



Voltage Waveforms Setup and Hold Times



Voltage Waveforms Propagation Delay Times

Voltage Waveforms Pulse Duration

Voltage Waveforms Enable and Disable Times

Notes:

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , $t_r \leq$ 2ns, $t_r \leq$ 2ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{dis} .
- G. tplh and tphl are the same as tdis.

Figure 5. Load Circuit and Voltage Waveforms

9 PS8373D 08/03/99