

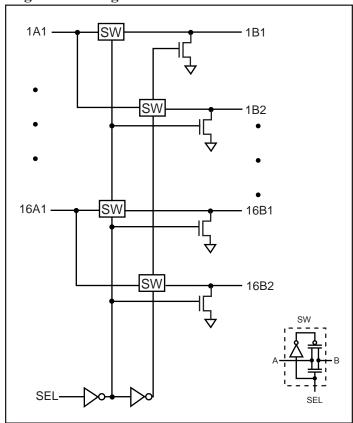
3.3V, Low Capacitance 16-Bit to 32-Bit Mux/Demux NanoSwitchTM

Product Features

- R_{ON} is 8 ohms typical
- Pulldown on B Ports
- Low Power-1mW
- Industrial Operation Temperature: -40°C to 85°C
- Near Zero Propagation Delay
- Switching Speed: 4.5ns max.
- Channel on capacitance: 11pF typ.
- V_{CC} Operating Range: 3.3V±10%
- >100 MHz Bandwidth
- Package: 56-pin 240 mil wide plastic TSSOP(A)

Product Description

Pericom Semiconductor's PI3B series of logic circuits are produced using the Company's advanced submicron CMOS technology.


The PI3B16234 is a 16-bit to 32-bit mux/demux switch. Industry leading advantages include almost zero propagation delay of 500ps because of 8-ohm channel resistance and low I/O capacitance. A1 port demultiplexes to either port B1 or B2. The switch is bidirectional.

Application

1

Memory Switching

Logic Block Diagram

Function Table

SEL	FUNCTION
L	nAl to nBl
Н	nAl to nB2

Note: n = 1 - 16

Product Pin Configuration

NC [1	√ 56 □ Vcc
1B1 ☐ 2	55 🛘 1 A 1
2B1 ☐ 3	54 🛘 1B2
2 A 1 ☐ 4	53 🛘 2B2
3 B 1 ☐ 5	52 🛘 3 A 1
4B1 ☐ 6	51 🛘 3 B 2
4 A 1 ☐ 7	50 🛘 4B2
GND ☐ 8	49 GND
5 B 1 ☐ 9	48 🛘 5 A 1
6 B 1 ☐ 10	47 🛘 5B2
6 A 1	46 🗎 6B2
7B1 ☐ 12	45 7A1
8D1 4 13	44 H /B2
8A1 4 14	43 802
9B1 🛘 15	42 D 9A1
10B1 🛘 16	41 9B2
10 A 1	40 10B2
11B1 [18	39 11A1
12B1 [19	38 11B2
12A1 [20	37 12B2
Vcc ☐ 21 13B1 ☐ 22	36 ☐ GND 35 ☐ 13A1
7	· · · · _
14B1 ☐ 23 14A1 ☐ 24	34
15B1 🗆 25	33 14B2 32 15 A 1
15B1 ☐ 25 16B1 ☐ 26	32 15A1 31 15B2
16B1 ☐ 26 16A1 ☐ 27	30 16B2
SEL [] 28	29 NC
SEL 4 28	29 H NC

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to+150°C
Ambient Temperature with Power Applied40°C to +85°C
Supply Voltage Range0.3V to +4.6V
DC Input Voltage0.5V to +4.6V
DC Output Current
Power Dissipation

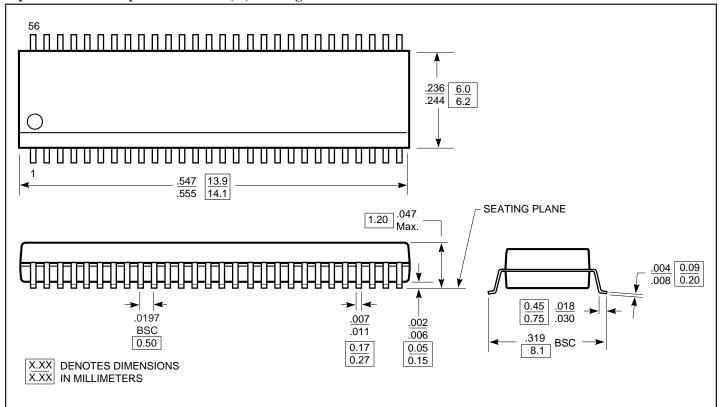
Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (V_{CC} = 3.3V ±10%, T_A=-40°C to 85°C)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ ⁽¹⁾	Max.	Units
$V_{ m IH}$	TTL Input HIGH Voltage		2.0	_	_	V
$V_{ m IL}$	Input LOW Voltage	SEL	-0.5	_	0.8	·
I_{IH}	Input High Current	SEL	_	_	1	
${ m I}_{ m IL}$	Input Low Current		_	_	1	μА
R _{ON}	Switch ON Resistance	$V_{CC} = Min., V_{IN} = 0.0V, I_{ON} = 12mA$ $V_{CC} = Min., V_{IN} = 2.4V, I_{ON} = 8mA$	_	8 12	12 23	Ω
I _O	B Port Pulldown Current	$V_{CC} = Min., V_O = V_{CC}$ SEL = HIGH for B1, SEL = LOW for B2	2.5	_	_	mA
C_{IN}	Input Capacitance	V - 0V	_	2.6	3.3	nE
C _{ON}	A/B Capacitance, Switch On	$V_{\rm IN} = 0 V$	_	11	14	pF
I_{CC}	Power Supply Quiescent		_	_	20	μA
ΔI_{CC}	Supply current per inut @ TTL HIGH	$V_{CC} = Max, V_{IN} = 3V$	_	_	2.5	mA

AC Electrical Characteristics (V_{CC}=3.3V±10%, T_A=-40°C to 85°C)


Parameters ⁽⁴⁾	Description	Test Condition	Min.	Тур.	Max.	Units
$t_{\rm PLH}$	Propagation Delay	$C_L = 25 \text{pF}, R_L = 500 \text{ ohms}^{(2)}$			500	ne
t_{PHL}	Fropagation Delay	CL - 23pr, KL - 300 oiliis.			300	ps
t_{PE}	- Bus Disable	C 25nE P 500 ahma	1 2		4.5	na
t_{PD}		$C_L = 25 pF, R_L = 500 \text{ ohms}$	1.3		4.3	ns

Notes:

- 1. Typical values are shown at V_{CC} = 3.3 V, +25 °C ambient and maximum loading.
- 2. Guaranteed by design.

6-pin 240 mil wide plastic TSSOP (A) Package

Ordering Information

Part	Pin-Package	Temperature
PI3B16234A	56 - TSSOP (A56)	−40°C to +85°C

Applications Information

Logic Inputs

The logic control inputs can be driven up to +3.6V regardless of the supply voltage. For example, given a +3.3V supply, IN may be driven low to 0V and high to 3.6V. Driving IN Rail-to-Rail® minimizes power consumption.

Power-Supply Sequencing and Hot-Plug Information

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V_{CC} and GND before applying signals to input/output or control pins.

Rail-to-Rail is a registeredtrademark of Nippon Motorola, Ltd.

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com