

$3.0V, \overline{SOT_{INY}^{TM}} 0.4\Omega$ Single-Supply SPDT Analog Switch

Features

• Low On-Resistance: 0.4Ω (+2.7V Supply)

• R_{ON} Matching: 0.09Ω Max.at 25 °C

• R_{ON} Flatness: 0.1Ω Max. (+3.0V Supply) at 25 °C

• Low 2nA Input Leakage at 25 °C

• +1.5V to +3.6V Single-Supply Operation

· Fast Switching Time: 40ns Max.

· -41dB Off-Isolation at 100KHz

• TTL/CMOS Logic Compatible

• Low Power Consumption: 5µW

• Packages available (Pb-free available):

- 6-pin Small Compact SOT-23

-6-pin Ultra Compact Thin Dual in-line Flat No Lead (TDFN)

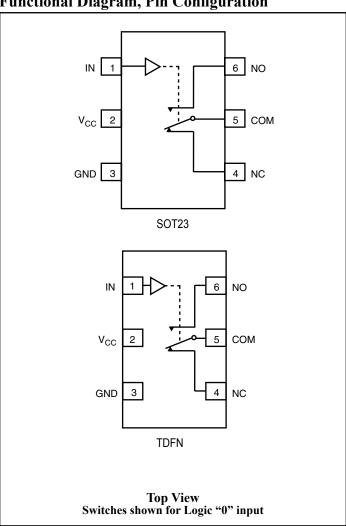
Applications

- Communication Circuits
- · Cellular Phones
- · Audio and Video Signal Routing
- Portable Battery-Operated Equipment
- · Data Acquisition Systems
- · Computer Peripherals
- Telecommunications
- · Relay Replacement
- · Wireless Terminals and Peripherals
- · Hard Drives
- Modems

Truth Table

Logic	NC	NO
0	ON	OFF
1	OFF	ON

Description


1

The PI3A4624 is a single-pole, double-throw (SPDT) analog switch. Specifications include a low ON-Resistance of 0.4Ω , and fast switching times (40ns Max.) with 3.0V supply operation.

Specifications are given for 1.8V, 2.5V and 3.3V power supply operation. Operating voltage range is +1.5V to +3.6V.

To minimize PC board area use, the device is available in the ultra compact TDFN, and the small compact SOT-23, 6-pin packages. Operating temperature range is -40° C to 85° C.

Functional Diagram, Pin Configuration

Absolute Maximum Ratings

Voltages Referenced to GND V _{CC}	-0.5V to +3.6V
$V_{IN}, V_{COM}, V_{NC}, V_{NO} \ (Note \ 1)$ or 30mA, whichever occurs first	-0.5V to V _{CC} +0.3V
Current (any terminal)	±200mA
Peak Current, COM, NO, NC (Pulsed at 1ms, 10% duty cycle)	±400mA

Thermal Information

Continuous Power Dissipation
SOT-23, 6-pin (derate 7.1mW/°C above +70°C) 0.5W
Storage Temperature65°C to +150°C
Lead Temperature (soldering, 10s) +300°C

Notes:

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +3.3V Supply

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units	
Analog Switch								
Analog Signal Range (3)	V _{ANALOG}		Full	0		V _{CC}	V	
On-Resistance	D		25		0.4	0.5		
On-Resistance	R _{ON}	$V_{CC} = 2.7V, I_{COM} = 100mA,$	Full			0.55		
On-Resistance Match Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$	V_{NO} or $V_{NC} = +1.5V$	25			0.08	Ω	
			Full			0.09		
On-Resistance Flat-	D	$V_{CC} = 2.7V, I_{COM} = 100 \text{mA}, V_{NO} \text{ or } V_{NC} = 0.8V, 2.0V$	25			0.1		
ness ⁽⁵⁾	R _{FLAT(ON)}		Full			0.1		
NO or NC Off Leakage	I _{NO(OFF)} or	$V_{CC} = 3.3V, V_{COM} = 0V,$ V_{NO} or $V_{NC} = +2.0V$	25	-1		1		
Current ⁽⁶⁾	I _{NC(OFF)}		Full	-10		10	4	
COM On Leakage Current ⁽⁶⁾		$V_{CC} = 3.3V, V_{COM} = +2.0V,$	25	-2		2	nA	
		V_{NO} or $V_{NC} = +2.0V$	Full	-20		20		

2

^{1.} Signals on NC, NO, COM, or IN exceeding V_{CC} or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Electrical Specifications - Single +3.3V Supply (continued)

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min ^{·(1)}		Max. ⁽¹⁾	Units
Logic Input							
Input High Voltage	$V_{ m IH}$	Guaranteed Logic High Level	Guaranteed Logic High Level Full				V
Input Low Voltage	$V_{ m IL}$	Guaranteed Logic LowLevel				0.5]
Input Current with Voltage High	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$		-1		1	
Input Current with Voltage Low	I _{INL}	$V_{IN} = 0.5 V$, all others = 1.4V		-1		1	μA
Dynamic							
Turn-On-Time	4		25			20	
Turn-On-Time	t _{ON}	$V_{CC} = 3.3 \text{V}, V_{NO} \text{ or } V_{NC} = 2.0 \text{V},$	Full			40	ns
Turn-Off-Time	,	Figure 1	25			10	
Turn-On-Time	$t_{ m OFF}$		Full			20	
Charge Injection ⁽³⁾	Q	$C_L = 1 \text{nF}, V_{GEN} = 0 \text{V}, R_{GEN} = 0 \Omega,$ Figure 2			40		рC
Off Isolation ⁽⁷⁾	O _{IRR}	$R_L = 50\Omega$, $f = 100$ KHz, Figure 3	•		-27		.tn
CrossTalk ⁽⁸⁾	X _{TALK}	$R_L = 50\Omega$, $f = 100$ KHz, Figure 4			-41		dB
NC or NO Capacitance	C _{NC/NO} (OFF)	C-1MILE Figure 5			75		
COM Off Capacitance	C _{COM(OFF)}	f = 1 MHz, Figure 5			75		pF
COM On Capacitance	C _{COM(ON)}	f = 1 MHz, Figure 6			200		
Supply							
Power-Supply Range	V _{CC}			1.5		3.6	V
Positive Supply Current	I _{CC}	$V_{CC} = 3.6V$, $V_{IN} = 0V$ or V_{CC}				100	nA

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

3

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20log_{10}$ [V_{COM} / (V_{NO} or V_{NC})]. See Figure 4.
- 8. Between any two switches. See Figure 5.

Electrical Specifications - Single +2.5V Supply

 $(V_{CC} = +2.5V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽¹⁾	Typ.(2)	Max. ⁽¹⁾	Units		
Analog Switch									
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V _{CC}	V		
On-Resistance	R _{ON}	$V_{CC} = 2.5 \text{V}, I_{COM} = -8 \text{mA}, V_{NO}$	25			0.5			
On-Resistance	KON	or $V_{NC} = 1.8V$	Full			0.6			
On-Resistance Match	$\Delta R_{ m ON}$		25			0.1	Ω		
Between Channels ⁽⁴⁾	ΔΚΟΝ	$V_{CC} = 2.5V$, $I_{COM} = -8mA$, V_{NO} or	Full			0.1	Ω		
On-Resistance Flat-	Dwy .mco.n	$V_{NC} = 0.8V, 1.8V$	25			0.1			
ness ⁽⁵⁾	R _{FLAT(ON)}		Full			0.1			
Dynamic	Dynamic								
Torre On Times	t _{ON}		25			30	ns		
Turn-On-Time		$V_{CC} = 2.5V$, V_{NO} or $V_{NC} = 1.8V$,	Full			50			
Town Off Times	,	Figure 1	25			15			
Turn-Off-Time	t _{OFF}		Full			30			
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2	25		40		рC		
Logic Input									
Input High Voltage	V _{IH}	Guaranteed Logic High Level	Full	1.4			V		
Input Low Voltage	$V_{\rm IL}$	Guaranteed Logic LowLevel	Full			0.5	v		
Input High Current	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$	Full	-1		1			
Input Low Current	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μA		

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

4

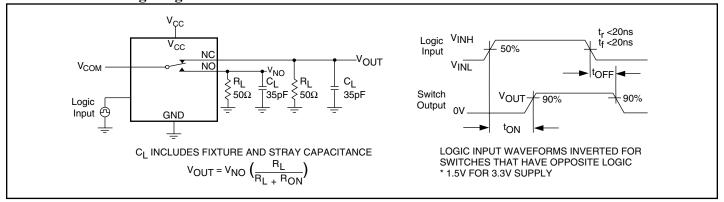
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.

Electrical Specifications - Single +1.8V Supply

 $(V_{CC} = +1.8V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units	
Analog Switch								
Analog Signal Range ⁽³⁾	Vanalog			0		V _{CC}	V	
On-Resistance	R _{ON}	$V_{CC} = 1.8V, I_{COM} = -4mA,$	25			0.55		
OII-Resistance	KON	V_{NO} or $V_{NC} = 1.5V$	Full			0.65		
On-Resistance			25			0.1		
Match Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$	$V_{CC} = 1.8V, I_{COM} = -4mA,$	Full			0.2	Ω	
On-Resistance	D	$V_{NO} \text{ or } V_{NC} = 0.8 \text{V}, 1.5 \text{V}$	25			0.9	1	
Flatness ⁽⁵⁾	R _{FLAT(ON)}		Full			1.3		
Dynamic								
Turn-On-Time	,	$V_{CC} = 1.8V$, V_{NO} or $V_{NC} = 1.5V$, Figure 1	25			50	ns	
Turn-On-Time	$t_{ m ON}$		Full			50		
Turn-Off-Time	4		25			20		
rum-On-Time	$t_{ m OFF}$		Full			40		
Charge Injection ⁽³⁾	Q	$C_L = 1 \text{nF}, V_{GEN} = 0 \text{V},$ $R_{GEN} = 0 \text{V}, \text{ Figure 2}$	25		36		pC	
Logic Input								
Input High Voltage	V _{IH}	Guaranteed Logic High Level	Full	1.4			V	
Input Low Voltage	V_{IL}	Guaranteed Logic LowLevel	Full			0.5		
Input High Current	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$	Full	-1		1		
Input Low Current	I_{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μA	

Notes:


1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

5

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.

Test Circuits/Timing Diagrams

Figure 1. Switching Time

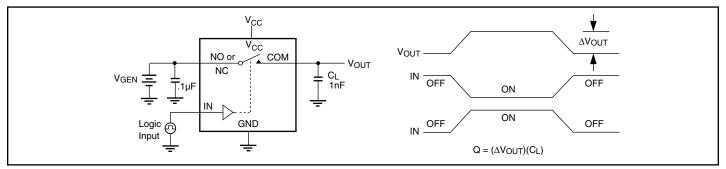


Figure 2. Charge Injection

6

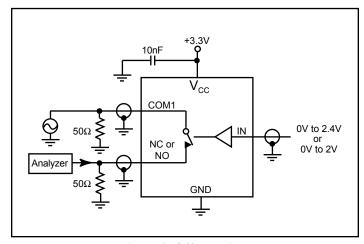


Figure 3. Off Isolation

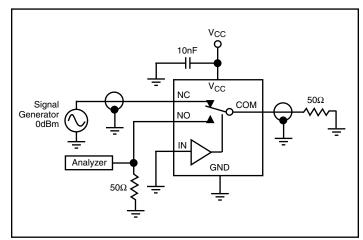


Figure 4. Crosstalk

Test Circuits/Timing Diagrams (continued)

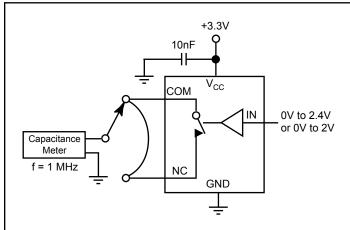


Figure 5. Channel-Off Capacitance

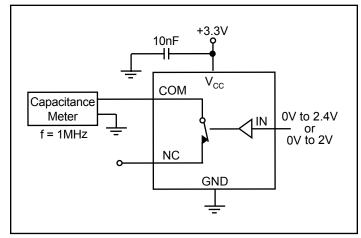
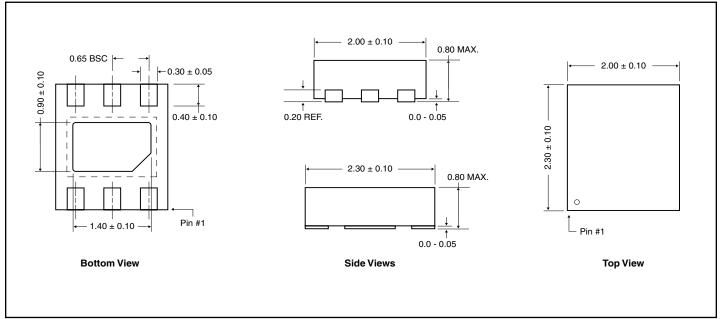
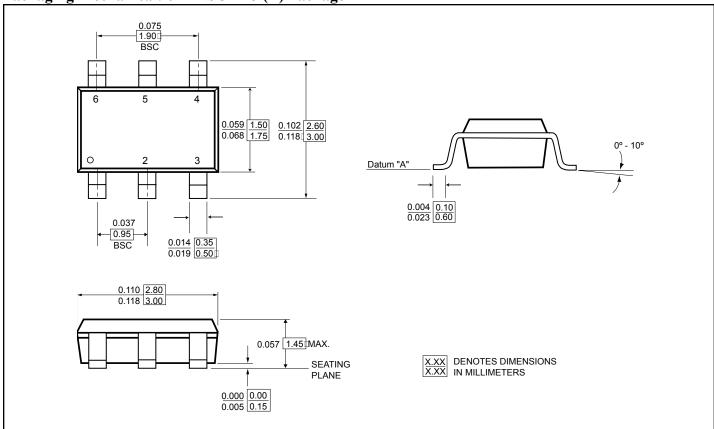



Figure 6. Channel-On Capacitance


Packaging Mechanical: 6-Pin TDFN (ZC) Package

7

Packaging Mechanical: 6-Pin SOT-23 (T) Package

Ordering Information

Order Code	Package Code	Package Type	Package Top Mark
PI3A4624TX	T	6-pin, Small Compact SOT-23	ZF
PI3A4624TEX	T	Pb-free & Green, 6-pin, Small Compact SOT-23	ZF
PI3A4624ZCEX	ZC	Pb-free & Green, 6-pin, Ultra Compact TDFN	ZF

Notes:

- Thermal characteristics can be found on the company web site at http://www.pericom.com/packaging/
- X = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • http://www.pericom.com 8