

3.0V, SOTINY 0.4 Ω Dual SPDT Analog Switch

Product Features

· CMOS Technology for Bus and Analog Applications

• Low On-Resistance: 0.4Ω (+2.7V Supply)

Wide V_{CC} Range: +1.5V to +3.6V
 Low Power Consumption: 5μW

· Rail-to-Rail switching throughout Signal Range

• Fast Switching Speed: 20ns max. at 3.3V

• High Off Isolation: -27dB at 100 KHz

 –41dB (100 KHz) Crosstalk Rejection Reduces Signal Distortion

 Extended Industrial Temperature Range: –40°C to 85°C

 SOTINY Package Technology (Pb-free available):
 12-pin Ultra Compact Thin Dual in-line Flat No-Lead TDFN

Applications

- · Cell Phones
- PDAs
- Portable Instrumentation
- · Battery Powered Communications
- · Computer Peripherals

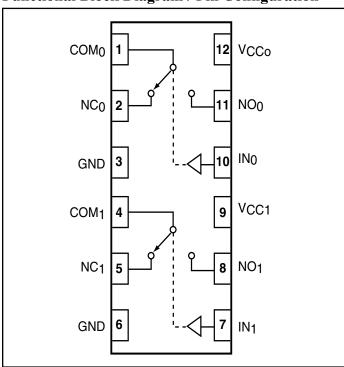
Pin Description

Pin Number	Name	Description
8, 11	NOx	Data Port (Normally Open)
3, 6	GND	Ground
2, 5	NCx	Data Port (Normally Closed)
1, 4	COMx	Common Output/Data Port
9, 12	V _{CC} x	Postive Power Supply ⁽²⁾
7, 10	INx	Logic Control

Notes:

1. x = 0 or 1

2. V_{CC0} ad V_{CC1} are not internally connected. Each must be powered seperately.


Description

The PI3A3160 is a, fast Dual single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, +1.5V to +3.6V, the switch has an On-Resistance of 0.4Ω at 3.0V.

Control inputs, IN, tolerates input drive signals up to 3.3V, independent of supply voltage.

PI3A3160 is a lower voltage and On-Resistance replacement for the PI5A3158.

Functional Block Diagram / Pin Configuration

Logic Function Table

1

Logic Input	Function
0	NCx Connected to COMx
1	NOx Connected to COMx

Absolute Maximum Ratings

Voltages Referenced to GND	
V _{CC}	0.5V to +3.6V
V _{IN} , V _{COM} , V _{NC} , V _{NO} (Note 1) or 30mA, whichever occurs first	$-0.5V$ to $V_+ +0.3V$
Current (any terminal)	±200mA
Peak Current, COM, NO, NC (Pulsed at 1ms, 10% duty cycle)	±400mA

Thermal Information

Continuous Power Dissipation	
SOT23-6 (derate 7.1mW/°C above +70°C)	0.5W
Storage Temperature	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Note 1: Signals on NC, NO, COM, or IN exceeding V_{CC} or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +3.3V Supply

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min.(1)	Typ. (2)	Max. (1)	Units	
Analog Switch	Analog Switch							
Analog Signal Range (3)	V _{ANALOG}		Full	0		V _{CC}	V	
On Resistance	R _{ON}		25		0.4	0.45		
Oli Resistance	KON	$V_{CC} = 2.7V, I_{COM} = 100mA,$	Full			0.5		
On-Resistance Match	AD	V_{NO} or $V_{NC} = +1.5V$	25			0.08	$\mid \mid_{\Omega} \mid$	
Between Channels ⁽⁴⁾	ΔR_{ON}		Full			0.09		
On-Resistance Flatness ⁽⁵⁾	Day 15000	$V_{CC} = 2.7V, I_{COM} = 100mA,$	25			0.1		
On-Resistance Flatness	R _{FLAT(ON)}	V_{NO} or $V_{NC} = 0.8V, 2.0V$	Full			0.1		
NO or NC Off Leakage	I _{NO(OFF)} or	$V_{CC} = 3.3V$, $V_{COM} = 0V V_{NO}$	25	-1		1		
Current ⁽⁶⁾	I _{NC(OFF)}	or $V_{NC} = +2.0V$	Full	-10		10] ",	
COM On Leakage Cur-	I _{COM(ON)}	$V_{CC} = 3.3V, V_{COM} = +2.0V$ $V_{NO} \text{ or } V_{NC} = +2.0V$	25	-2		2	nA	
rent ⁽⁶⁾			Full	-20		20		

Electrical Specifications - Single +3.3V Supply

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Description	Param- eters	Test Conditions	Temp (°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units	
Logic Input								
Input High Voltage	V_{IH}	Guaranteed logic High Level	Full	1.4			V	
Input Low Voltage	V_{IL}	Guaranteed logic Low Level				0.5		
Input Current with Voltage High	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$		-1		1	4	
Input Current with Voltage Low	I _{INL}	$V_{IN} = 0.5V$, all other = 1.4V		-1		1	μА	
Dynamic								
Turn-On Time	4		25			20		
Turn-On Time	t _{ON}	$V_{CC} = 3.3 \text{V}, V_{NO} \text{ or}$ $V_{NC} = 2.0 \text{V}, \text{ Figure 1}$	Full			40	ns	
Turn-Off Time	4		25			15		
Turn-Oil Time	t _{OFF}		Full			30		
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ Ω, Figure 2	25		40		рC	
Off Isolation ⁽⁷⁾	O _{IRR}	$R_L = 50\Omega$, $f = 100$ KHz, Figur	e 3		-27		dB	
Cross Talk ⁽⁸⁾	X _{TALK}	$R_L = 50\Omega$, $f = 100$ KHz, Figure	: 4		-41		uБ	
NC or NO Capacitance	C _(OFF)	f = 1MHz, Figure 5			75			
COM Off Capacitance	C _{COM(OFF)}	1 – Tiviriz, Figure 3	f = 1MHz, Figure 5		75		pF	
COM On Capacitance	C _{COM(ON)}	f = 1MHz, Figure 6		200				
Supply								
Power-Supply Range	V _{CC}		Full	1.5		3.6	V	
Positve Supply Current	I_{CC}	$V_{CC} = 3.6V, V_{IN} = 0V \text{ or } V_{CC}$				100	nA	

Notes:

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.
- $6. \quad Leakage \ parameters \ are \ 100\% \ tested \ at \ maximum \ rated \ hot \ temperature \ and \ guaranteed \ by \ correlation \ at \ +25 ^{\circ}C.$
- 7. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NC})]$. See Figure 4.
- 8. Between any two switches. See Figure 5.

Electrical Specifications - Single +2.5V Supply

 $(V_{CC} = +2.5V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Description	Parameters	Test Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V _{CC}	V
On Resistance	R _{ON}	$V_{CC} = 2.5V, I_{COM} = -8mA,$	25			0.5	
On Resistance	KON	V_{NO} or $V_{NC} = 1.8V$	Full			0.55	
On-Resistance Match	$\Delta R_{ m ON}$		25			0.09	Ω
Between Channels (4)	ΔKON	$V_{CC} = 2.5V, I_{COM} = -8mA,$	Full			0.09	22
On-Resistance Flatness ⁽⁵⁾	Dry (T/O)	$V_{NO} \text{ or } V_{NC} = 0.8V \ 1.8V$	25			0.06	
On-Resistance Flatness	R _{FLAT(ON)}		Full			0.07	
Dynamic	r		r		Г		
Turn-On Time	$t_{ m ON}$		25			30	ns l
	-011	$V_{CC} = 2.5V$, V_{NO} or $V_{NC} =$	Full			50	
Turn-Off Time	$t_{ m OFF}$	1.8V, Figure 1	25			15	
	-011		Full			30	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2	25		40		pC
Logic Input	-						
Input HIGH Voltage	$V_{ m IH}$	Guaranteed logic high level	Full	1.4			V
Input LOW Voltage	$V_{ m IL}$	Guaranteed logic Low level	Full			0.5	
Input HIGH Current	I _{INH}	$V_{IN} = 1.4V$, all others = 0.5V	Full	-1		1	^
Input HIGH Current	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μA

Notes:

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.

2/27/03

Electrical Specifications - Single +1.8V Supply

 $(V_{CC} = +1.8V \pm 10\%, GND = 0V, V_{INH} = 1.4V, V_{INL} = 0.5V)$

Description	Parameters	Test Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ.(2)	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V _{CC}	V
On-Resistance	R _{ON}	$V_{CC} = 1.8V, I_{COM} = -4mA, V_{NO}$	25			0.55	
On-Resistance	KON	or $V_{NC} = 1.5V$	Full			0.6	
On-Resistance Match	$\Delta R_{ m ON}$		25			0.03	Ω
Between Channels (4)	ΔKON	$V_{CC} = 1.8V, I_{COM} = -4mA, V_{NO}$	Full			0.03	22
On-Resistance Flat-	D-v	or $V_{NC} = 0.8V, 1.5V$	25			0.9	
ness ⁽⁵⁾	R _{FLAT(ON)}		Full			1.1	
Dynamic	1		1		î .		
Turn-On Time	t _{ON}		25			40	
	JOIN	$V_{CC} = 1.8V$, V_{NO} or $V_{NC} = 1.5V$,	Full			50	ns
Turn-Off Time	t _{OFF}	Figure 1	25			20	115
Turn on Time	OFF		Full			40	
Charge Injection(3)	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2	25		36		pC
Logic Input							
Input HIGH Voltage	V_{IH}	Guaranteed logic high level	Full	1.4			V
Input LOW Voltage	$V_{ m IL}$	Guaranteed logic Low level	Full			0.5	v
Input HIGH Current	I _{INH}	$V_{IN} = 1.4V$, all others = 0.5V	Full	-1		1	^
Input HIGH Current	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μA

Notes:

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.

Test Circuits/Timing Diagrams

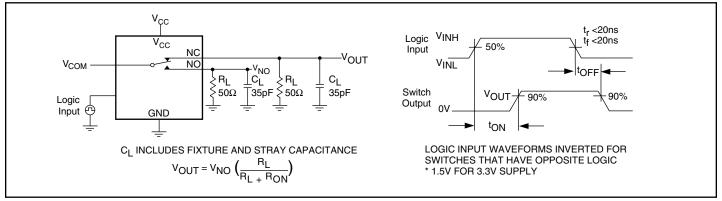


Figure 1. Switching Time

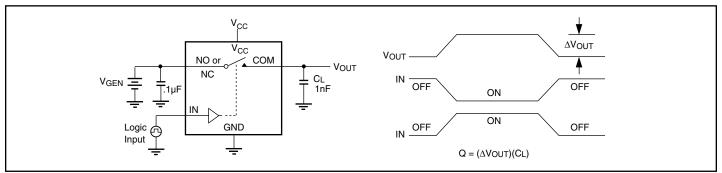


Figure 2. Charge Injection

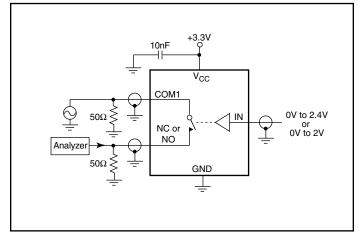


Figure 3. Off Isolation

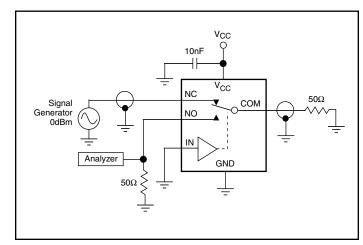


Figure 4. Crosstalk

Test Circuits/Timing Diagrams (continued)

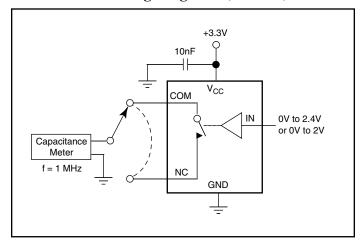
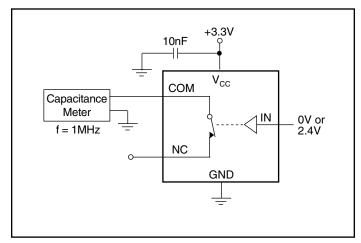
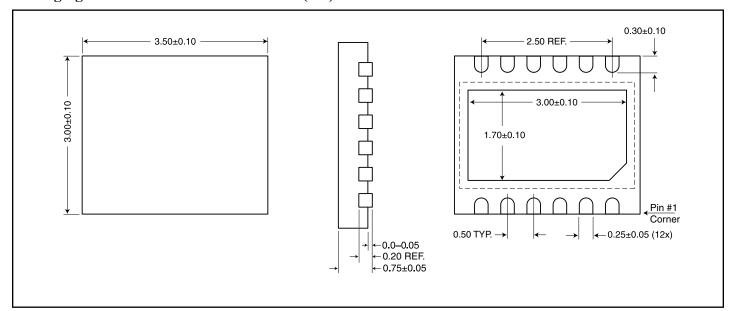
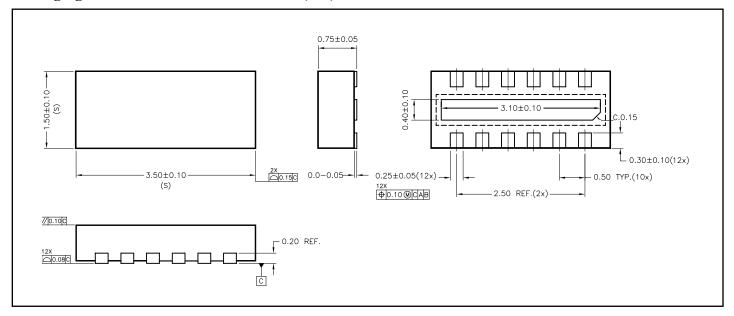


Figure 5. Channel-Off Capacitance


Figure 6. Channel-On Capacitance

Packaging Mechanical: 12-Contact TDFN (ZE)

Packaging Mechanical: 12-Contact TDFN (ZG)

Ordering Information

Ord	ering Code	Package Code	PackageType	Package Top Mark
PI3A	A3160ZEEX	ZE	Pb-free & Green, 12-contact TDFN	YI
PI3A	3160ZGEX	ZG	Pb-free & Green, 12-contact TDFN	YI

Notes:

- 1. Thermal characteristics can be found on the company web site at http://www.pericom.com/packaging/
- 2. X = Tape/Reel