

3.0V, SOTINYTM 0.4 Ω SPDT Analog Switch

Product Features

· CMOS Technology for Bus and Analog Applications

• Low ON-Resistance: 0.4Ω (+2.7V Supply)

Wide V_{CC} Range: +1.5V to +3.6V
 Low Power Consumption: 5μW

· Rail-to-Rail switching throughout Signal Range

Fast Switching Speed: 20ns max. at 3.3V

• High Off Isolation: -27dB at 100 KHz

 –41dB (100KHz) Crosstalk Rejection Reduces Signal Distortion

• Extended Industrial Temperature Range: -40°C to 85°C

• Packaging (Lead-free available):

- 6-pin Small Compact SOT-23

- 6-pin Ultra Compact Thin Dual in-line Flat No Lead TDFN

Applications

· Cell Phones

PDAs

· Portable Instrumentation

• Battery Powered Communications

· Computer Peripherals

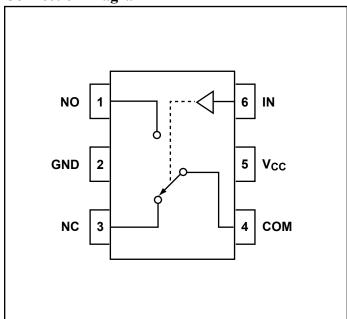
Pin Description

Pin Number	Name	Description
1	NO	Data Port (Normally Open)
2	GND	Ground
3	NC	Data Port (Normally Closed)
4	COM	Common Output/Data Port
5	V_{CC}	Positive Power Supply
6	IN	Logic Control

Logic Function Table

Logic Input	Function		
0	NC Connected to COM		
1	NO Connected to COM		

Description


The PI3A3159 is a, fast single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, +1.5V to +3.6V, the PI3A3159 has an ON-Resistance of 0.4Ω at 3.0V.

Control input, IN, tolerates input drive signals up to 3.3V, independent of supply voltage.

PI3A3159 is a lower voltage and ON-Resistance replacement for the PI5A3159.

Connection Diagram

1

Absolute Maximum Ratings

Voltages Referenced to GND	
V _{CC}	0.5V to +3.6V
$V_{IN}, V_{COM}, V_{NC}, V_{NO} \ (Note \ 1)or \ 30mA, whichever occurs first$	-0.5 V to V _{CC} $+0.3$ V
Current (any terminal)	±200mA
Peak Current, COM, NO, NC	
(Pulsed at 1ms, 10% duty cycle)	±400mA

Thermal Information

Continuous Power Dissipation	
SOT23-6 (derate 7.1mW/°C above +70°C)	0.5W
Storage Temperature	.–65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Note:

1. Signals on NC, NO, COM, or IN exceeding V_{CC} or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +3.3V Supply

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽¹⁾	Typ. (2)	Max. (1)	Units
Analog Switch							
Analog Signal Range (3)	V _{ANALOG}		Full	0		V _{CC}	V
On Resistance	Dov		25			0.4	Ω
Oli Resistance	R _{ON}	$V_{CC} = 2.7V, I_{COM} = 100mA,$	Full			0.5	
On-Resistance Match	$\Delta R_{ m ON}$	V_{NO} or $V_{NC} = +1.5V$	25			0.08	
Between Channels ⁽⁴⁾	ΔΚΟΝ		Full			0.09	
On-Resistance Flatness ⁽⁵⁾	Day (mean)	$V_{CC} = 2.7V, I_{COM} = 100 \text{mA}, V_{NO} \text{ or } V_{NC} = 0.8V, 2.0V$	25			0.1	
Oil-Resistance Flatness	KFLAT(ON)		Full			0.1	
NO or NC Off Leakage	I _{NO(OFF)} or	$V_{CC} = 3.3 \text{V}, V_{COM} = 0 \text{V V}_{NO} \text{ or}$	25	-1		1	
Current ⁽⁶⁾	I _{NC(OFF)}	$V_{NC} = +2.0V$	Full	-10		10	. n A
COM On Leakage Cur-	COM On Leakage Cur-	$V_{CC} = 3.3V, V_{COM} = +2.0V V_{NO}$	25	-2		2	nA
rent ⁽⁶⁾ I _{COM(ON)}		or $V_{NC} = +2.0V$	Full	-20		20	

 $\textbf{Electrical Specifications - Single +3.3V Supply (continued)} \ (V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = \ 0.5V)$

Parameter	Symbol Conditions		Temp. (°C)	Min. ⁽¹⁾	Typ. (2)	Max. (1)	Units
Logic Input	-			-	-	-	-
Input High Voltage	V _{IH}	Guaranteed Logic High Level	Full	1.4			V
Input Low Voltage	$V_{ m IL}$	Guaranteed Logic LowLevel				0.5	V
Input Current with Voltage High	I _{INH}	$V_{\rm IN}$ = 1.4V, all others = 0.5V		-1		1	4
Input Current with Voltage Low	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V		-1		1	μА
Dynamic	•		•			-	
Torre On Times		$V_{CC} = 3.3 \text{V}, V_{NO} \text{ or } V_{NC} = 2.0 \text{V},$ Figure 1 25 Full 25	25			20	
Turn-On-Time t _{ON}	ION		Full			20	ns
Turn-Off-Time	4		25			10	
Turn-On-Time	$t_{ m OFF}$		Full			15	
Charge Injection ⁽³⁾	Q	$C_L = 1 \text{nF}, V_{GEN} = 0 \text{V},$ $R_{GEN} = 0 \Omega$, Figure 2	25		40		рC
Off Isolation ⁽⁷⁾	O _{IRR}	$R_L = 50\Omega$, $f = 100$ KHz, Figure 3			-27		αL
CrossTalk ⁽⁸⁾	X _{TALK}	$R_L = 50\Omega \text{ f} = 100 \text{ KHz}, \text{ Figure 4}$			-41		dB
NC or NO Capacitance	C _{NC/NO} (OFF)	f = 1MHz Figure 5			90		
COM Off Capacitance	C _{COM(OFF)}	f = 1MHz, Figure 5			90		pF
COM On Capacitance	C _{COM(ON)}	f = 1MHz, Figure 6			240		
Supply							
Power-Supply Range	V _{CC}		Full	1.5		3.6	V
Positive Supply Current	I _{CC}	$V_{CC} = 3.6V$, $V_{IN} = 0V$ or V_{CC}	Tull			100	nA

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- Guaranteed by design.
- 4. $DR_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20log_{10}$ [V_{COM} / (V_{NO} or V_{NC})]. See Figure 4.
- 8. Between any two switches. See Figure 5.

Electrical Specifications - Single +2.5V Supply $(V_{CC} = +2.5V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V _{CC}	V
On-Resistance	D _{OV} ,	$V_{CC} = 2.5V, I_{COM} = -8mA,$	25			0.5	
OII-Resistance	R _{ON}	V_{NO} or $V_{NC} = 1.8V$	Full			0.55	
On-Resistance Match Be-	$\Delta R_{ m ON}$		25			0.09	Ω
tween Channels ⁽⁴⁾	ΔΙΚΟΝ	$V_{CC} = 2.5V, I_{COM} = -8mA,$	Full			0.09	
On-Resistance Flatness ⁽⁵⁾	Dwy 15000	V_{NO} or $V_{NC} = 0.8V$, 1.8V	25			0.02	
On-Resistance Flatness	R _{FLAT(ON)}		Full			0.02	
Dynamic				-		-	-
T O. Ti		2:	25			30	
Turn-On-Time	ton	$V_{CC} = 2.5V$, V_{NO} or $V_{NC} = 1.8V$, Full				30]
Turn Off Times		Figure 1	25			15	ns
Turn-Off-Time	t _{OFF}		Full			15	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ Ω, Figure 2	25		40		pC
Logic Input				-			-
Input High Voltage	V _{IH}	Guaranteed Logic High Level	Full	1.4			
Input Low Voltage	V _{IL}	Guaranteed Logic LowLevel	Full			0.5	V
Input High Current	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$	Full	-1		1	
Input Low Current	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μΑ

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.

Electrical Specifications - Single +1.8V Supply

 $(V_{CC} = +1.8V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min.(1)	Typ. (2)	Max. (1)	Units	
Analog Switch								
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V _{CC}	V	
On-Resistance	D	$V_{CC} = 1.8V, I_{COM} = -4mA,$	25			0.6		
On-Resistance	R _{ON}	V_{NO} or $V_{NC} = 1.5V$	Full			0.6		
On-Resistance Match	APov		25			0.07	Ω	
Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$	$V_{CC} = 1.8V, I_{COM} = -4mA,$	Full			0.09	22	
On-Resistance	Day (m/oxy)	V_{NO} or $V_{NC} = 0.8V$, 1.5V	25			0.8		
Flatness ⁽⁵⁾	R _{FLAT(ON)}		Full			0.8		
Dynamic					-	-		
Turn-On-Time	_		25			50		
Turn-On-Time	t _{ON}	$V_{CC} = 1.8V, V_{NO} \text{ or } V_{NC} = 1.5V,$	Full			50		
Turn-Off-Time	_	Figure 1	25			25	ns	
Turn-OII-Time	t _{OFF}		Full			25		
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ Ω, Figure 2	25		36		рC	
Logic Input								
Input High Voltage	V_{IH}	Guaranteed Logic High Level	Full	1.4			V	
Input Low Voltage	$V_{ m IL}$	Guaranteed Logic LowLevel	Full			0.5	v	
Input High Current	I _{INH}	$V_{IN} = 1.4V$, all others = 0.5V	Full	-1		1	^	
Input Low Current	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μA	

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.

Test Circuits/Timing Diagrams

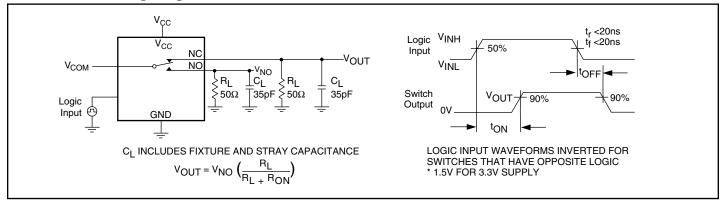


Figure 1. Switching Time

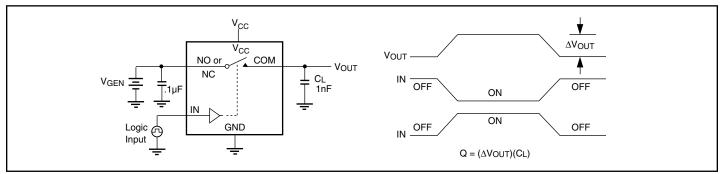


Figure 2. Charge Injection

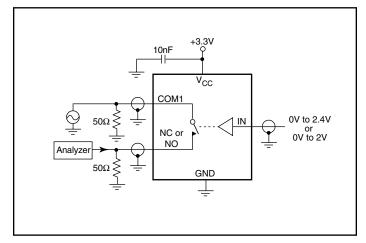


Figure 3. Off Isolation

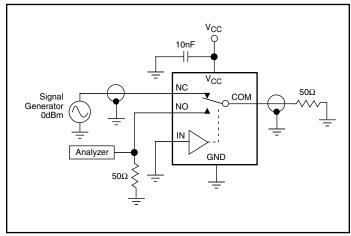
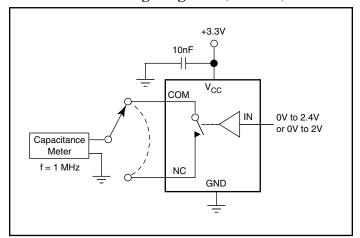



Figure 4. Crosstalk

Test Circuits/Timing Diagrams (continued)

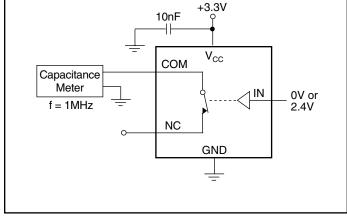
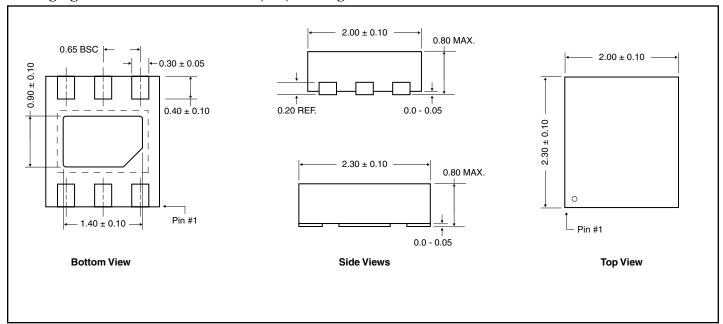
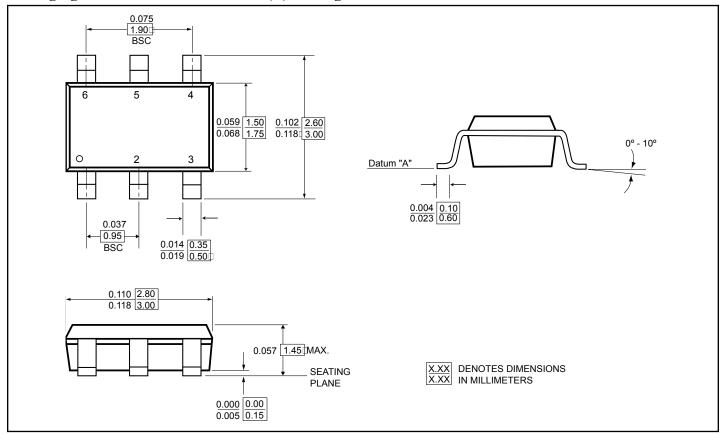



Figure 5. Channel-Off Capacitance


Figure 6. Channel-On Capacitance

Packaging Mechanical: 6-Pin TDFN (ZC) Package

Packaging Mechanical: 6-Pin SOT-23 (T) Package

Ordering Information

Ordering Code	Package Code	Package Description	Package Top Mark
PI3A3159TX	T	6-pin, SOT-23	ZG
PI3A3159TEX	T	Pb-free and Green, 6-pin, SOT-23	ZG
PI3A3159ZCEX	ZC	Pb-free and Green, 6-contact, TDFN	ZG

- 1. Thermal characteristics can be found on the company web site at http://www.pericom.com/packaging/
- 2. X = Tape/Reel