

Precision Wide Bandwidth Analog Switch

Features

- · Rail-To-Rail operation
- Pin-compatible with 3125 Bus Switch & 74 series 125
- Single-Supply operation: 2V to 6V
- Low ON-resistance: 8-ohms typical @ 5V
- Tight match between channels: 0.9-ohm typical
- R_{ON} flatness: 3-ohms typical
- Low power consumption: 0.5μ-ohm typical
- High Speed, T_{ON} = 8ns typical
- High-current channel capability: >100mA
- Wide bandwidth: >200 MHz

Applications

- Instrumentation, ATE
- Audio Switching and Routing
- Telecommunications Systems
- Data Communications
- · Battery-Powered Systems
- Replaces Mechanical Relays

Description

Pericom PI5A101 is an all-purpose analog switch designed for single-supply operation from +2V to +6V. This switch is ideal for audio, video, and data switching and routing.

The PI5A101 is a quad SPST (single-pole, single-throw) NC (normally closed) function.

When on, each switch conducts current equally well in either direction. When off, they block voltages up to the powersupply rails.

The PI5A101 is fully specified with +5V and +3.3V supplies. With +5V the R_{ON} is 8 ohms typical, making it ideal for replacing mechanical relays in data communications, test equipment, and instrumentation applications. Matching between channels is better than 2 ohms. RON flatness is better than 4 ohms over the specified range.

These analog switches also offer wide bandwidths (>200 MHz high speed ($T_{ON} > 15$ ns), and low charge injection (Q > 10pC).

The PI5A101 is available in the narrow-body 14-pin small SOIC and 16-pin QSOP packages for operation over the industrial (-40°C to +85°C) temperature range.

Functional Diagrams, Pin Configurations and Truth Tables

Switches show for logic "0" input NIC = Not Internally Connected

Logic	Switch			
0	ON			
1	OFF			

Ordering Information

P/N	Package
PI5A101W	Narrow Body SOIC-14
PI5A101Q	QSOP-16

Electrical Specifications - Single +5V Supply $(V_{CC} = +5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Description	Parameter	Conditions	Temp. (°C)	Min. ⁽²⁾	Typ.(1)	Max. ⁽²⁾	Units
Analog Switch							,
Analog Signal Range (3)	Vanalog		Full	0		V _{CC}	V
On-Resistance	R _{ON}		25		8	10	ohm
On-Resistance		$V_{CC} = 4.5V, I_{COM} = -30mA,$	Full			18	
On-Resistance Match	A.D	V_{NO} or $V_{NC} = +2.5V$	25		0.9	2	
Between Channels (4)	$\Delta R_{ m ON}$		Full			4	
On-Resistance Flatness ⁽⁵⁾	D	$V_{CC} = 5V$, $I_{COM} = -30$ mA,	25		3	4	
On-Resistance Flatness	RFLAT(ON)	V_{NO} or $V_{NC} = 1V$, 2.5V, 4V	Full			5	
NO or NC Off	I _{NO(OFF)} or	$V_{CC} = 5.5V, V_{COM} = 0V,$ V_{NO} or $V_{NC} = 4.5V$	25		0.05		nA
Leakage Current ⁽⁶⁾	I _{NC(OFF)}		Full	-80		80	
COM Off Leakage	I _{COM(OFF)}	$V+ = 5.5V, V_{COM} = +4.5V$ $V_{NO} \text{ or } V_{NC} = \pm 0V$	25		0.05		
Current ⁽⁶⁾			Full	-80		80	
COM On Leakage	ī	$V_{CC} = 5.5V, V_{COM} = +4.5V$ $V_{NO} \text{ or } V_{NC} = +4.5V$	25		0.07		
Current ⁽⁶⁾	I _{COM(ON)}		Full	-80		80	
Logic Input							
Input High Voltage	V _{INH}	Guaranteed Logic High Level		2			* 7
Input Low Voltage	V _{INL}	Guaranteed Logic Low Level				0.8	V
Input Current with Input Voltage High	I _{INH}	$V_{\rm IN}$ =2.4V, all others = 0.8V	Full	1	0.005	1	
Input Current with Input Voltage Low	I _{INL}	V_{IN} =0.8V, all others = 2.4V		-1	0.005	1	μΑ

$\textbf{Electrical Specifications - Single + 5V Supply} \ (V_{CC} = +5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V) \ (continued)$

Dynamic								
Turn-On Time	t _{ON}		25		8	15	ns	
		$V_{CC} = 5V$, see Figure 1	Full			20		
Turn-Off Time	4	VCC – 3 v, see Figure 1	25		3.5	7		
Turi-Oil Time	t _{OFF}		Full			10		
Charge Injection (3)	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ ohm, see Figure 2			7	10	pC	
Off Isolation	OIRR	$R_L = 50$ ohm, $C_L = 5$ pF, f = 10 MHz, see Figure 3			-55		- dB - pF	
Crosstalk ⁽⁸⁾	I _{COM(OFF)}	$R_L = 50$ ohm, $C_L = 5$ pF, f = 10 MHz, see Figure 4	25		-92			
NC or NO Capacitance	C _(OFF)	f = 1kHz, see Figure 5			8			
COM Off Capacitance	C _{COM(OFF)}				8			
COM On Capacitance	C _{COM(ON)}	f = 1kHz, see Figure 6			14]	
-3dB Bandwidth	BW	$R_L = 50$ ohm, see Figure 7	- Full		230		MHz	
Distortion ⁽⁹⁾	D	$R_{\rm L} = 10 {\rm kohm}$	r uli		0.03		%	
Supply								
Power-Supply Range	V _{CC}			2		6	V	
Positive Supply Current	I _{CC}	V_{CC} = 5.5V, V_{IN} = 0V or V_{CC} , All channels on or off	Full			1	μА	

Absolute Maximum Ratings

Voltages Referenced to GND
$Voltages \ Referenced \ to \ GND \\ V_{CC}0.5V \ to \ +7V \\ V_{IN}, \ V_{COM}, \ V_{NC}{}^{(1)}0.5V \ to \ V_{CC} \ +2V \\$
$V_{IN},V_{COM},V_{NC}{}^{(1)}0.5V$ to V_{CC} +2V
or 30mA, whichever occurs first
Current (any terminal except COM, NO, NC)
Current: COM, NO, NC (pulsed at 1ms, 10% duty cycle) 120mA

Thermal Information

Continuous Power Dissipation
Narrow SO & QSOP (derate 8.7mW/°C above +70°C) 650mW
Storage Temperature65°C to +150°C
Lead Temperature (soldering, 10s)+300°C

Note 1.

Signals on NC, COM, or IN exceeding V_{CC} or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications-Single +3.3V Supply (V_{CC}=+3.3V±10%, GND=0V, V_{INH}=2.4V, V_{INL}=0.8V)

Parameter	Symbol	Conditions	Temp(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch	Analog Switch						
Analog Signal Range ⁽³⁾	V _{ANALOG}		Full	0		V _{CC}	V
On Projetoway	D	$V_{CC} = 3V$, $I_{COM} = -30$ mA, V_{NO} or $V_{NC} = 1.5V$	25		12	18	ohm
On-Resistance	R_{ON}		Full			28	
On-Resistance Match	A.D.		25		1	2	
Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$	$V_{CC} = 3.3 \text{V}, I_{COM} = -30 \text{mA},$	Full			4	
On-Resistance	R _{FLAT(ON)}	V_{NO} or $V_{NC} = 0.8V$, 2.5V	25		4	10	
Flatness ^(3,5)			Full			12	
Dynamic							
Turn-On Time	t _{ON}	$V_{CC} = 3.3V$, V_{NO} or $V_{NC} = 1.5V$ see Figure 1	25		14	25	- ns
Turn-On Time			Full			40	
Turn-Off Time	t _{OFF}		25		5	12	
			Full			20	
Charge Injection ⁽³⁾	Q	$C_L = 1 \text{ nf}, V_{GEN} = 0 \text{ V}, R_{GEN} = 0 \text{ V}, \text{ Fig. 2}$	25		5	10	рC
Supply							
Positive Supply Current	I_{CC}	$V_{CC} = 3.6V$, $V_{IN} = 0V$ or V_{CC} All channels on or off	Full			1	μА

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design
- 4. $\Delta R_{ON} = R_{ON} MAX R_{ON} MIN$
- 5. Flatness is defined as the difference between the maximum and minimum value of on-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} V_B / V_A$. See Figure 3.
- 8. Between any two switches. See Figure 4.
- 9. $D = R_{FLAT(ON)}/R_L$.

Typical Operating Characteristics ($T_A = +25^{\circ}C$, unless otherwise noted)

 $R_{ON}\,$ vs. $V_{COM}\,$ and Temperature 16 A: T_A = 90 □ C B: T_A = 25 □ C - C: T_A = □49 □ C $V_{CC} = +5V$ 12

V_{COM} (V)□

 $R_{ON}(\Omega)$

20 /_{CC} = +5V 16

PS7079D 12/10/02 5

Insertion Loss vs. Frequency

Switching Times vs. V_{CC} 25 20 ton, toff, (ns) 10 t_{ON} 5 toff 0 3 3.5 4.5 5 5.5 6 6.5 4 7 VCC (V)

Supply Current vs. Temperature

Input Switching Threshold vs. Supply Voltage

Switching Times vs. Temperature

Supply Current vs. Input Switching Frequency

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 2. Charge Injection

Test Circuits/Timing Diagrams (continued)

Figure 3. Off Isolation

Figure 4. Crosstalk

Figure 5. Channel-Off Capacitance

Figure 6. Channel-On Capacitance

Figure 7. Bandwidth

Packaging Mechanical: 16-Pin, QSOP

Packaging Mechanical: 16-Pin, SOIC

Ordering Information

Part Number	Package	Package Code	Temperature
P I 5 A 1 0 1	16-Pin, QSOP	Q 1 6	4000 4- 10500
P I 5 A 1 0 1	16-Pin, SOIC	W 16	-40 °C to $+85$ °C

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com

9

PS7079D 12/10/02