Precision 1-18 Clock Buffer #### **Product Features** - High-speed, to 100 MHz - Low-noise non-inverting 1-18 buffer - Supports up to four SDRAM DIMMs - Low skew (< 250ps) between any two output clocks - I²C Serial Configuration interface - Multiple V_{DD}, V_{SS} pins for noise reduction - 3.3V power supply voltage - Separate Hi-Z pin for testing - 48-pin SSOP package (V) # **Description** The PI6C180, a high-speed low-noise 1-18 non-inverting buffer designed for SDRAM clock buffer applications operates up to 100 MHz. At power up all SDRAM output are enabled and active. The I²C Serial control may be used to individually activate/deactivate any of the 18 output drivers. The output enable (OE) pin may be pulled low to put all outputs in a Hi-Z state. #### Note: 1 Purchase of I²C components from Pericom conveys a license to use them in an I²C system as defined by Philips. # Logic Block Diagram # **Product Pin Configuration** | NC [| 10 | 48 🛘 NC | |----------------------|------------------|-----------------------| | NC [| 2 | 47 🛘 NC | | V _{DD0} [| 3 | 46 ☐ V _{DD9} | | SDRAM0 [| 4 | 45 SDRAM15 | | SDRAM1 | 5 | 44 SDRAM14 | | V _{SS0} [| 6 | 43 🛘 V _{SS9} | | V _{DD1} | 7 | 42 🛘 V _{DD8} | | SDRAM2 | 8 | 41 SDRAM13 | | SDRAM3 | 9 | 40 SDRAM12 | | V _{SS1} [| 10 48-Pin | 39 ☐ V _{SS8} | | BUF_IN [| 11 V | 38 DE | | V _{DD2} □ | 12 | 37 🛘 V _{DD7} | | SDRAM4 | 13 | 36 SDRAM11 | | SDRAM5 | 14 | 35 SDRAM10 | | V _{SS2} [| 15 | 34 🛘 V _{SS7} | | V _{DD3} [| 16 | 33 🛘 V _{DD6} | | SDRAM6 [| 17 | 32 SDRAM9 | | SDRAM7 | 18 | 31 SDRAM8 | | V _{SS3} [| 19 | 30 ☐ V _{SS6} | | V _{DD4} □ | 20 | 29 🛘 V _{DD5} | | SDRAM16 | 21 | 28 SDRAM17 | | V _{SS4} [| 22 | 27 🛘 V _{SS5} | | V _{DDIIC} [| 23 | 26 V _{SSIIC} | | SDATA [| 24 | 25 SCLOCK | | .
 | | | | | | | PS8141D 09/18/03 #### **Product Pin Description** | Pin | Symbol | Type | Qty | Description | |----------------------------------|-----------------------|----------|-----|---| | 4,5,8,9 | SDRAM[0-3] | О | 4 | SDRAM Byte 0 clock output | | 13,14,17,18 | SDRAM[4-7] | О | 4 | SDRAM Byte 1 clock output | | 31,32,35,36 | SDRAM[8-11] | О | 4 | SDRAM Byte 2 clock output | | 40,41,44,45 | SDRAM[12-15] | О | 4 | SDRAM Byte 3 clock output | | 21,28 | SDRAM[16-17] | О | 4 | SDRAM clock outputs usable for feedback | | 11 | BUF_IN | I | 1 | Input for 1-18 buffer | | 38 | OE | I | 1 | Hi-Z all outputs when held LOW. Has a >100kohm internal pull-up resistor | | 24 | SDATA | I/O | 1 | Data pin for I ² C circuitry. Has a >100kohm internal pull-up resistor | | 25 | SCLOCK | I/O | 1 | Clock pin I ² C circuitry. Has a >100kohm internal pull-up resistor | | 3,7,12,16,20, 29,33,37,
42,46 | V _{DD[0-9}] | Power | 10 | 3.3V power supply for SDRAM buffers | | 6,10,15,19,22,27,30,34,
39,43 | V _{SS[0-9}] | Ground | 10 | Ground for SDRAM buffers | | 23 | V _{DDIIC} | Power | 1 | 3.3V power supply for I ² C circuitry | | 26 | V _{SSIIC} | Ground | 1 | Ground for I ² C circuitry | | 1,2,47,48 | NC | Reserved | 4 | Reserved for future modification. No connects | # **OE Functionality** | OE | SDRAM[0-17] | Note | |----|-------------|------| | 0 | Hi-Z | 1 | | 1 | BUF_IN | 2 | #### **Notes:** - 1. Used for test purposes only - 2. Buffers are non-inverting # PI6C180 I²C Address Assignment | A6 | A5 | A4 | A3 | A2 | A1 | A0 | R/W | |----|----|----|----|----|----|----|-----| | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | # PI6C180 Serial Configuration Map Byte0: SDRAM Active/Inactive Register (1 = enable, 0 = disable) | Bit | Pin Number | Description | | | | |-------|------------|----------------------------|--|--|--| | Bit 7 | 18 | SDRAM7 (Active/Inactive) | | | | | Bit 6 | 17 | SDRAM6 (Active/Inactive) | | | | | Bit 5 | 14 | SDRAM5 (Active/Inactive) | | | | | Bit 4 | 13 | SDRAM4 (Active/Inactive) | | | | | Bit 3 | 9 | 9 SDRAM3 (Active/Inactive) | | | | | Bit 2 | 8 | SDRAM2 (Active/Inactive) | | | | | Bit 1 | 5 | SDRAM1 (Active/Inactive) | | | | | Bit 0 | 4 | SDRAM0 (Active/Inactive) | | | | #### Note: 2 Inactive means outputs are held LOW and are disabled from switching. #### 2-Wire I²C Control The I²C interface permits individual enable/disable of each clock output and test mode enable. The PI6C180 is a slave receiver device. It can not be read back. Sub addressing is not supported. All preceding bytes must be sent in order to change one of the control bytes. Every bite put on the SDATA line must be 8-bits long (MSB first), followed by an acknowledge bit generated by the receiving device. During normal data transfers SDATA changes only when SCLOCK is LOW. Exceptions: A HIGH to LOW transition on SDATA while SCLOCK is HIGH indicates a "start" condition. A LOW to HIGH transition on SDATAwhile SCLOCK is HIGH is a "stop" condition and indicates the end of a data transfer cycle. detected. Following acknowledgement of the address byte (D2), two more bytes must be sent: - 1. "Command Code" byte, and - 2. "Byte Count" byte. Although the data bits on these two bytes are "don't care," they must be sent and acknowledged. Each data transfer is initiated with a start condition and ended with a stop condition. The first byte after a start condition is always a 7-bit address byte followed by a read/write bit. (HIGH = read from addressed device, LOW= write to addressed device). If the device's own address is detected, PI6C180 generates an acknowledge by pulling SDATA line LOW during ninth clock pulse, then accepts the following data bytes until another start or stop condition is **Byte1: SDRAM Active/Inactive Register** (1 = enable, 0 = disable) | (1 - Chable, 0 - disable) | | | | | | |---------------------------|-------|---------------------------|--|--|--| | Bit | Pin # | Description | | | | | Bit 7 | 45 | SDRAM15 (Active/Inactive) | | | | | Bit 6 | 44 | SDRAM14 (Active/Inactive) | | | | | Bit 5 | 41 | SDRAM13 (Active/Inactive) | | | | | Bit 4 | 40 | SDRAM12 (Active/Inactive) | | | | | Bit 3 | 36 | SDRAM11 (Active/Inactive) | | | | | Bit 2 | 35 | SDRAM10 (Active/Inactive) | | | | | Bit 1 | 32 | SDRAM9 (Active/Inactive) | | | | | Bit 0 | 31 | SDRAM8 (Active/Inactive) | | | | | - | • | · | | | | **Byte2: Optional Register for Possible Future** Requirements (1 = enable, 0 = disable) | Bit | Pin # | Description | |-------|-------|---------------------------| | Bit 7 | 28 | SDRAM17 (Active/Inactive) | | Bit 6 | 21 | SDRAM16 (Active/Inactive) | | Bit 5 | | (Reserved) | | Bit 4 | | (Reserved) | | Bit 3 | | (Reserved) | | Bit 2 | | (Reserved) | | Bit 1 | | (Reserved) | | Bit 0 | | (Reserved) | #### **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) | Storage Temperature65°C to+150°C | |--| | Ambient Temperature with Power Applied0°C to +70°C | | 3.3V Supply Voltage to Ground Potential0.5V to +4.6V | | DC Input Voltage –0.5V to +4.6V | Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. # Supply Current ($V_{DD} = +3.465V$, $C_{LOAD} = Max$.) | Symbol | Parameter | Test Condition | Min. | Тур. | Max. | Units | |----------|----------------|--------------------|------|------|------|-------| | I_{DD} | Supply Current | BUF_IN = 0 MHz | | | 3 | | | I_{DD} | Supply Current | BUF_IN = 66.66 MHz | | | 230 | mA | | I_{DD} | Supply Current | BUF_IN = 100.0 MHz | | | 360 | | 3 PS8141D 09/18/03 # DC Operating Specifications ($V_{DD} = +3.3V \pm 5\%$, $T_A = 0^{\circ}C - 70^{\circ}C$) | Symbol | Parameter | Test Condition | Min. | Max. | Units | |--------------------------|------------------------|-------------------------|----------------------|----------------------|-------| | Input Voltage | | | · | | | | $ m V_{IH}$ | Input high voltage | V_{DD} | 2.0 | V _{DD} +0.3 | V | | $V_{ m IL}$ | Input low voltage | | V _{SS} -0.3 | 0.8 | · | | $I_{ m IL}$ | Input leakage current | $0 < V_{IN} < V_{DD}$ | -5 | +5 | mA | | $V_{DD}[0-9] = 3.3V \pm$ | 5% | • | • | | | | V _{OH} | Output high voltage | $I_{OH} = -1 \text{mA}$ | 2.4 | | V | | V _{OL} | Output low voltage | $I_{OL} = 1 \text{mA}$ | | 0.4 | | | C _{OUT} | Output pin capacitance | | | 6 | "E | | C _{IN} | Input pin capacitance | | | 5 | pF | | L _{PIN} | Pin Inductance | | | 7 | nН | | T _A | Ambient Temperature | No Airflow | 0 | 70 | °C | # **SDRAM Clock Buffer Operating Specification** | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Units | |-----------------------|----------------------------------|---------------------|------|------|------|-------| | I _{OHMIN} | Pull-up current | $V_{OUT} = 2.0V$ | -54 | | | | | I _{OHMAX} | Pull-up current | $V_{OUT} = 3.135V$ | | | -46 | 4 | | I _{OLMIN} | Pull-down current | $V_{OUT} = 1.0V$ | 54 | | | mA | | I _{OLMAX} | Pull-down current | $V_{OUT} = 0.4V$ | | | 53 | | | t _{RH} SDRAM | Output rise edge rate SDRAM only | 3.3V ±5% @04V-2.4V | 1.5 | | 4 | V/ma | | t _{TH} SDRAM | Output fall edge rate SDRAM only | 3.3V ±5% @2.4V-0.4V | 1.5 | | 4 | V/ns | # **ACTiming** | Symbol | Parameter | 66 N | MHz | 100 MHz | | Units | |------------------------------------|-----------------------------|------|------|---------|------|--------| | | | Min. | Max. | Min. | Max. |] | | t _{SDKP} | SDRAM CLK period | 15.0 | 15.5 | 10.0 | 10.5 | | | t_{SDKH} | SDRAM CLK high time | 5.6 | | 3.3 | | ns | | t _{SDKL} | SDRAM CLK low time | 5.3 | | 3.1 | | | | t _{SDRISE} | SDRAM CLK rise time | 1.5 | 4.0 | 1.5 | 4.0 | V/ma | | t _{SDFALL} | SDRAM CLK fall time | 1.5 | 4.0 | 1.5 | 4.0 | - V/ns | | t _{PLH} | SDRAM Buffer LH prop delay | 1.0 | 5.0 | 1.0 | 5.0 | | | t _{PHL} | SDRAM Buffer HL prop delay | 1.0 | 5.0 | 1.0 | 5.0 |] | | t _{PZL} ,t _{PZH} | SDRAM Buffer Enable delay | 1.0 | 8.0 | 1.0 | 8.0 | ns | | t _{PLZ} ,t _{PHZ} | SDRAM Buffer Disable delay | 1.0 | 8.0 | 1.0 | 8.0 | 1 | | Duty Cycle | Measured at 1.5V | 45 | 55 | 45 | 55 | % | | t _{SDSKW} | SDRAM Output to Output Skew | | 250 | | 250 | ps | 4 Figure 1. Clock Waveforms 5 #### Minimum & Maximum Expected Capacitive Loads | Clock | Min.
Load | Max.
Load | Units | Notes | | |-------|--------------|--------------|-------|-----------------------------|--| | SDRAM | 20 | 30 | pF | SDRAM DIMM
Specification | | #### **Notes:** - 1. Maximum rise/fall times are guaranteed at maximum specified load. - 2. Minimum rise/fall times are guaranteed at minimum specified load. - 3. Rise/fall times are specified with pure capacitive load as shown. # load as shown. Testing is done with an additional 500-ohm resistor in parallel. ### **Design Guidelines to Reduce EMI** - Place series resistors and CI capacitors as close as possible to the respective clock pins. Typical value for CI is 10pF. Series resistor value can be increased to reduce EMI provided that the rise and fall time are still within the specified values. - 2. Minimize the number of "vias" of the clock traces. - 3. Route clock traces over a continuous ground plane or over a continuous power plane. Avoid routing clock traces from plane to plane (refer to rule #2). - 4. Position clock signals away from signals that go to any cables or any external connectors. PS8141D 09/18/03 # **PCB Layout Suggestion** 6 #### Note: This is only a suggested layout. There may be alternate solutions depending on actual PCB design and layout. As a general rule, C1-C11 should be placed as close as possible to their respective V_{DD} . Figure 2. Design Guidelines Recommended capacitor values: C1-C11 0.1µF, ceramic C12 22µF PS8141D 09/18/03 # 48-Pin SSOP (V) Package #### **Table of Dimensions** | Body | | E (Width) | D (Length) | A (Height) | e (Pin-to-Pin pitch) | |-----------|------|-----------|------------|------------|----------------------| | 48 pins | Min. | 0.291 | 0.620 | 0.095 | 0.025 | | (300 mil) | Max. | 0.299 | 0.630 | 0.110 | _ | # **Ordering Information** | P/N | Description | | | |----------|---------------------|--|--| | PI6C180V | 48-pin SSOP Package | | | **Pericom Semiconductor Corporation**