

Single Wide Bandwidth Analog Switch

Features

- Single-Supply Operation (+2V to +6V)
- · Rail-to-Rail Analog Signal Dynamic Range
- Low On-Resistance (6Ω typ with 5V supply) Minimizes Distortion and Error Voltages
- On-Resistance Flatness, 3Ω typical
- Low Charge Injection Reduces Glitch Errors. Q = 4pC (typical)
- · Replaces Mechanical Relays
- High Speed: $t_{ON} = 10$ ns typical
- Wide -3dB Bandwidth: 300 MHz (typical)
- High-Current Channel Capability: >100mA
- TTL/CMOS Logic Compatible
- Low Power Consumption (0.5μW typical)
- Small outline transistor package minimizes board area
 - -65 mil wide SOT23-5 (T5)

Applications

- · Audio, Video Switching and Routing
- Battery-Powered Communication Systems
- · Computer Peripherals
- Telecommunications
- · Portable Instrumentation
- · Mechanical Relay Replacement
- · Cell Phones
- PDAs

Truth Table

ŌĒ	PI5A125			
0	ON			
1	OFF			

Switch shown for Logic "0" input

Ordering Information

P/N	Package			
PI5A125T	SOT23-5			

Description

The PI5A125 is a single analog switch designed for single-supply operation. This high-precision device is ideal for low-distortion audio, video, signal switching and routing.

The PI5A125 is a single-pole single-throw (SPST), normally closed (NC) switch. The switch is open when \overline{OE} is HIGH.

This switch conducts current equally well in either direction when on. When off, it blocks voltages up to V_{CC} .

The PI5A125 is fully specified with +5V, and +3.3V supplies. With +5V, it guarantees <10W on-resistance. On-resistance flatness is less than 5Ω over the specified range. The switch also guarantees fast switching speeds (t_{ON} <20ns).

This product is available in a 5-pin SOT23 plastic package for operation over the industrial (-40°C to +85°C) temperature range.

Functional Diagram, Pin Configuration

Electrical Specifications - Single +5V Supply $(V_{CC} = +5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Description	Parameter	Conditions	Temp. (°C)	Min. ⁽²⁾	Typ. (1)	Max. ⁽²⁾	Units
Analog Switch		•	•			•	•
Analog Signal Range (3)	V _{ANALOG}		Full	0		V _{CC}	
On-Resistance	Ron	$V_{CC} = 4.5V$, $I_{B} = -30$ mA,	25		8	10	V
		$V_A = +2.5V$	Full			12	1
O D	D	$V_{CC} = 5V$, $I_B = -30$ mA, $V_A = 1V$, 2.5V, 4V	25		2.5	3.5	Ω
On-Resistance Flatness ⁽⁵⁾	RFLAT(ON)		Full			4	
Off Leakage Current ⁽⁶⁾	I _{A(OFF)} or	$V_{CC} = 5.5 \text{V}, V_{B} = 0 \text{V},$	25		0.20		
On Leakage Current	I _{B(OFF)}	$V_A = 4.5V$	Full	-80		80	- A
On Leakage Current ⁽⁶⁾	I _{A(ON)} or	V+ = 5.5V,	25		0.20		nA
On Leakage Current	$I_{B(ON)}$	$V_{\rm B} = V_{\rm A} = +4.5V$	Full	-80		80	
Logic Input							
Input High Voltage	V_{IH}	Guaranteed Logic High Level	Full	2			17
Input Low Voltage	$V_{ m IL}$	Guaranteed Logic Low Level				0.8	V
Input Current with Input Voltage High	I _{INH}	V_{IN} =2.4V, all others = 0.8V		-1	0.005	1	μА
Input Current with Input Voltage Low	I_{INL}	V_{IN} =0.8V, all others = 2.4V					
Dynamic							
Turn-On Time	tory	Vac = 5V can Figure 1	25		7	15	
Turr-On Time	$t_{\rm ON}$	$V_{CC} = 5V$, see Figure 1	Full			20	- nc
T. OMT	4	V - 12V Firm 2	25		1	7	
Turn-Off Time	toff	$V_{COM} = \pm 3V$, see Figure 2	Full		2	5	
Charge Injection (3)	Q	$C_L = 1 \text{nF}, V_{GEN} = 0 \text{V},$ $R_{GEN} = 0 \Omega, \text{ see Figure 2}$				10	рC
Off Isolation	OIRR	$R_L = 50\Omega$, $C_L = 5pF$, $f = 10$ MHz, see Figure 3	25				dB
A or B Off Capacitance	C _(OFF)	f = 1kHz, see Figure 4			5.5		pF
On Capacitance	C _(ON)	f = 1kHz, see Figure 5			5.5		
-3dB Bandwidth	BW	$R_L = 50\Omega$, see Figure 6			300		MHz
Supply			•	•		•	•
Power-Supply Range	V _{CC}		Full	2		6	V
Positive Supply Current	I_{CC}	$V+=5.5V, V_{\rm IN}=0V \ {\rm or} \ V_{\rm CC},$ All channels on or off				1	μΑ

PS8199B 03/25/99 2

Absolute Maximum Ratings

Voltages Referenced to GND
V_{CC} 0.5V to +7V
$V_{OE},V_A,V_B{}^{(1)}$ 0.5V to V_{CC} +2V
or 30mA, whichever occurs first
Current (any terminal except A, B) 30mA
Current: A,B (pulsed at 1ms, 10% duty cycle) 120mA

Thermal Information

Continuous Power Dissipation		
SOT23-5 (derate 7mW/°C above +70°C) 550mV		
Storage Temperature65°C to +	-150°C	
Lead Temperature (soldering, 10s)	-300°C	

Note 1:

Signals on \overline{OE} , A, B exceeding Vcc or Gnd are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications-Single +3.3V Supply $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp(°C)	Min.(1)	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V _{CC}	V
On-Resistance	R _{ON}	$V_{CC} = 3V$, $I_B = -30$ mA, $V_A = 1.5V$	25		12	18	
OII-Resistance			Full			22	Ω
On-Resistance $R_{FLAT(ON)}$ $V_{CC} = 3.3V_{CC}$	$V_{CC} = 3.3 \text{V}, I_{B} = -30 \text{mA},$	25		0.5	4		
Flatness ^(3,5)		$V_A = 0.8V, 2.5V$	Full			5	
Dynamic	Dynamic						
Turn-On Time	ton	$V_{CC} = 3.3 \text{V to VNO}$ or VNC = 1.5V, Fig.1	25		15	25	
Turn-On Time			Full			40	
T Off True	toff		25		1.5	12	ns
Turn-Off Time			Full			20	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nf, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Fig.2	25		1.3	10	рC
Supply							
I_{CC}	Positive Supply Current	$V_{CC} = 3.6V$, $V_{ID} = 0V$ or V_{CC} All channels on or off	Full			1	μА

Notes:

1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.

3

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design
- 4. $\Delta R_{ON} = R_{ON} \max R_{ON} \min$
- 5. Flatness is defined as the difference between the maximum and minimum value of on-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20log_{10} V_B / V_A$. See figure 3.

PS8199B 03/25/99

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 2. Charge Injection

4

PS8199B 03/25/99

Test Circuits/Timing Diagrams (continued)

Capacitance Meter f = 1kHz GND GND

Figure 3. Off Isolation

Figure 4. Channel-Off Capacitance

Figure 5. Channel-On Capacitance

Figure 6. Bandwidth

5

PS8199B 03/25/99