Data Sheet No. PD10036_G

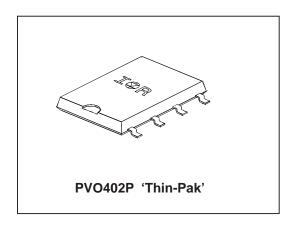
International IOR Rectifier

PVO402P

Microelectronic Power IC **HEXFET® Power MOSFET Relay** Single Pole, Normally Open + Ring Detector 0-400V, 120mA AC/DC

General Description

The PVO402P Photovoltaic Relay is a dual-pole, normally open solid-state relay plus ring detector. By integrating these two functions in one package it can replace two discrete components, i.e., a relay and an AC-input opto-coupler. The relay portion of PVO402P utilizes International Rectifier's HEXFET power MOSFET as the output switch, driven by an integrated circuit photovoltaic generator of novel construction. The output switch is controlled by radiation from a GaAlAs light emitting diode (LED) which is optically isolated from the photovoltaic generator. The ring detector portion of PVO402P has two LEDs in inverse parallel connection as the input sensing element and a silicon NPN photo-transistor as the output switch.


PVO402P is ideally suited for PCMCIA fax/modem cards. Its extremely low profile allows it to be used in Type II cards whose outer shells are only 5mm thick. PVO402P Relays are packaged in an 8-pin, molded 'Thin-Pak' DIP package with 'gull-wing' surface mount terminals. It is available in plastic shipping tubes or on tape-and-reel. Please refer to Part Identification (opposite) for details.

Applications

- On/Off Hook switch
- Dial pulsing
- Ringer injection
- Ring detection
- Loop current detection

Features

- **HEXFET Power MOSFET output**
- Bounce-free operation
- $3,750\ V_{\text{RMS}}\ \text{I/O}$ Isolation Linear AC/DC operation
- Solid-State reliability
- UL recognized and BABT certified

Part Identification

PVO402P surface-mount, plastic shipping tube PVO402P-T surface-mount, tape and reel

(HEXFET is the registered trademark for International Rectifier Power MOSFETs)

nΑ

mW

Electrical Specifications (-40°C \leq T_A \leq +85°C unless otherwise specified) **RELAY**

INPUT CHARACTERISTICS	Limits	Units
Minimum Control Current (see figure 1)	3.0	mA
Maximum Control Current for Off-State Resistance @T _A =+25°C	0.4	mA
Control Current Range (Caution: current limit input LED, see figure 6)	3.0 to 25	mA
Maximum Reverse Voltage	7.0	V

OUTPUT CHARACTERISTICS	Limits	Units
Operating Voltage Range	0 to ±400	V _(DC or AC peak)
Maximum Load Current @ T _A =+40°C	120	mA
5mA Control (see figure 1)		
Maximum On-State Resistance @T _A =+25°C	35	Ω
For 50mA pulsed load, 5mA Control (see figure 4)		
Maximum Off-State Leakage @T _A =+25°C, ±400V (see figure 5)	1.0	μA
Maximum Turn-On Time @T _A =+25°C (see figure 7)	2.0	ms
For 50mA, 100 V _{DC} Load, 5mA Control		
Maximum Turn-Off Time @T _A =+25°C (see figure 7)	0.5	ms
For 50mA, 100 V _{DC} Load, 5mA Control		
Maximum Output Capacitance @ 50V _{DC}	12	pF

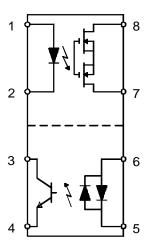
DETECTOR

INPUT CHARACTERISTICS	Limits	Units
Minimum Control Current @ $I_C = 2mA$, $V_{CE} = 0.5V$	6.0	mA
Maximum Control Current for Off-State Leakage I _C =1μA, V _{CE} =5V @T _A =+25°C	5	μA
Control Current Range (Caution: current limit input LED, see figure 6)	6.0 to 25	mA
OUTPUT CHARACTERISTICS	Limits	Units
Minimum Collector-Emitter Breakdown Voltage @ I _C = 10μA	20	V _{DC}
Minimum Current Transfer Ratio @ I _{LED} = 6mA, V _{CE} = 5V (see figure 9)	33	%
Maximum Saturation Voltage @ I _{LED} = 16mA, I _C = 2mA	0.5	V

500

150

COMBINED


Maximum Leakage Current @ I_{LED}=0mA, V_{CE} = 5V

Maximum Power Dissipation @T_A=+25°C (derate linearly 2.0mW/°C)

GENERAL CHARACTERISTICS		Limits	Units
Minimum Dielectric Strength, Input-Output		3750	V _{RMS}
Minimum Dielectric Strength, Relay-Detector		1000	V _{DC}
Minimum Insulation Resistance, Input-Output @T _A =+25°C, 50%RH, 100V _{DC}		10 ¹²	Ω
Maximum Capacitance, Input-Output		3.0	pF
Maximum Pin Soldering Temperature (10 seconds)	maximum)	+260	
Ambient Temperature Range:	Operating	-40 to +85	°C
	Storage	-40 to +100	

International Rectifier does not recommend the use of this product in aerospace, avionics, military or life support applications. Users of this International Rectifier product in such applications assume all risks of such use and indemnify International Rectifier against all damages resulting from such use.

Connection Diagram

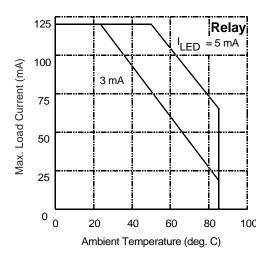


Figure 1. Current Derating Curve

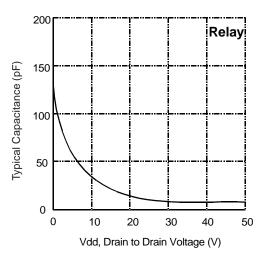


Figure 2. Typical Output Capacitance

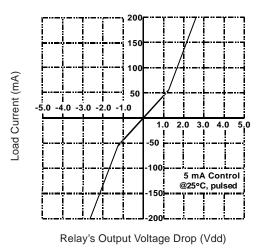


Figure 3. Linearity Characteristics

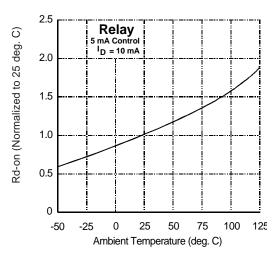


Figure 4. Typical Normalized On-Resistance

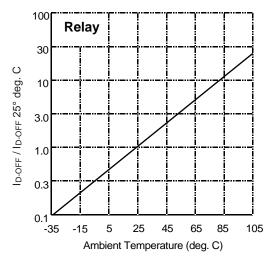


Figure 5. Typical Normalized Off-State Leakage

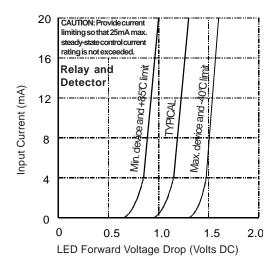
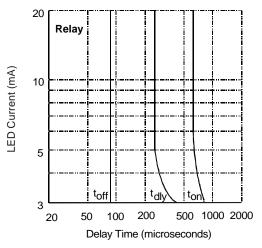



Figure 6. Input Characteristics (Current Controlled)

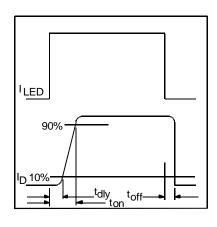


Figure 7. Typical Delay Times

Figure 8. Delay Time Definitions

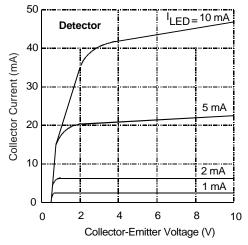
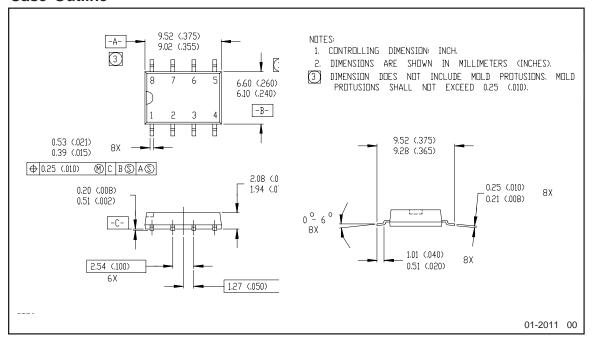



Figure 9.Typical Transfer Characteristics

Case Outline

International

TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 10/17/2003