

PE4232

Product Description

The PE4232 is a high-isolation MOSFET Switch designed for CATV applications. It covers a broad frequency range from DC up to 1.3 GHz, and is non-reflective at both RF1 and RF2 ports. This SPST switch integrates a single-pin CMOS control interface, and provides low insertion loss while operating with extremely low bias from a single +3-volt supply. In a typical CATV application, the high isolation PE4232 can replace bulky and expensive mechanical switches.

The PE4232 is manufactured in Peregrine's patented Ultra Thin Silicon (UTSi®) CMOS process, offering the performance of GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Schematic Diagram

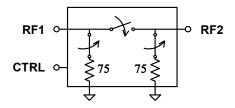


Table 1. Electrical Specifications @ +25 °C ($Z_s = Z_L = 75 \Omega$)

Parameter Condition **Minimum** Maximum Units **Typical** Operating Frequency¹ DC 1300 MHz DC - 50 MHz 0.65 0.5 Insertion Loss dΒ 0.75 1000 MHz 1.0 DC - 50 MHz 75 Isolation dΒ 1000 MHz 50 53 Return Loss 5 - 1000 MHz 14 20 dΒ Input 1 dB Compression² 1000 MHz 30 dBm Input IP2² 1000 MHz 80 dBm Input IP3² 1000 MHz 50 dBm Video Feedthrough³ 15 mV_{pp} Switching Time 2 μs

- Notes: 1. Device linearity will begin to degrade below 1 MHz.
 - 2. Measured in a 50 Ω system.
 - 3. Measured with a 1 ns risetime, 0/3 V pulse and 500 MHz bandwidth.

SPST CATV MOSFET Switch

Features

- Non-reflective 75-ohm switch
- High isolation: 90 dB at 5 MHz, 53 dB at 1 GHz
- Low insertion loss: 0.5 dB at 5 MHz, 0.75 dB at 1 GHz
- High 1 dB compression: +30 dBm
- CMOS/TTL single-pin control
- Single +3-volt supply operation
- Extremely low bias: 33 μA @ 3V
- Integrated 75-ohm terminations

Figure 2. Package Type

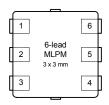
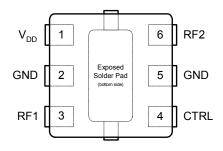



Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin No.	Pin Name	Description	
1	V_{DD}	Nominal 3 V supply connection. ¹	
2	GND	Ground connection. ³	
3	RF1	RF port. ²	
4	CTRL	CMOS or TTL logic level: High = RF1 to RF2 signal path Low = RF1 isolated from RF2	
5	GND	Ground connection. ³	
6	RF2	RF port. ²	

Notes: 1. A bypass capacitor should be placed as close as possible to the pin.

- 2. Both RF pins must be DC blocked by an external capacitor or held at 0 $\ensuremath{V_{\text{DC}}}.$
- The exposed pad must be soldered to the ground plane for proper switch performance.

Table 3. Absolute Maximum Ratings

Symbol	Parameter/Condition	Min	Max	Unit
V_{DD}	Power supply voltage	-0.3	4.0	V
Vı	Voltage on CTRL input	-0.3	5.5	V
T _{ST}	Storage temperature	-65	150	°C
T _{OP}	Operating temperature	-40	85	°C
P _{IN}	Input power (50Ω)		33	dBm
V_{ESD}	ESD voltage (Human Body Model)		200	V

Table 4. DC Electrical Specifications @ 25 °C

Parameter	Min	Тур	Max	Unit
V _{DD} Power Supply	2.7	3.0	3.3	V
I_{DD} Power Supply Current ($V_{DD} = 3V, V_{CNTL} = 3V$)		33		μΑ
Control Voltage High	0.7xV _{DD}		5	V
Control Voltage Low	0		$0.3xV_{DD}$	V

Electrostatic Discharge (ESD) Precautions

When handling this UTSi device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified.

Latch-Up Avoidance

Unlike conventional CMOS devices, UTSi CMOS devices are immune to latch-up.

Device Description

The PE4232 high isolation SPST CATV Switch is designed to support CATV applications such as premise disconnect of a CATV signal path. This function is typically performed by bulky and expensive mechanical switches. The high isolation characteristics (>51 dB at 1 GHz, 90 dB at 5 MHz), high compression point, and integrated 75-ohm terminations make the PE4232 an ideal, low cost alternative.

Figure 4. Typical Application Block Diagram

Table 5. Truth Table

Control Voltage	Signal Path	
CTRL = CMOS or TTL High	RF1 to RF2	
CTRL = CMOS or TTL Low	RF1 isolated from RF2	

The control logic input pin (CTRL) is typically driven by a 3-volt CMOS logic level signal, and has a threshold of 50% of V_{DD} . For flexibility to support systems that have 5-volt control logic drivers, the control logic input has been designed to handle a 5-volt logic HIGH signal. (A minimal current will be sourced out of the V_{DD} pin when the control logic input voltage level exceeds V_{DD} .)

File No. 70/0054~01A | UTSi ® CMOS RFIC SOLUTIONS

Typical Performance Data @ +25 °C (75-ohm impedance except as indicated)

Figure 5. Insertion Loss

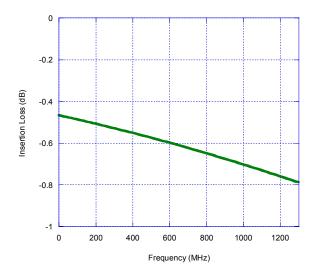


Figure 6. Input 1 dB Compression Point & IIP3 (50-ohm system impedance)

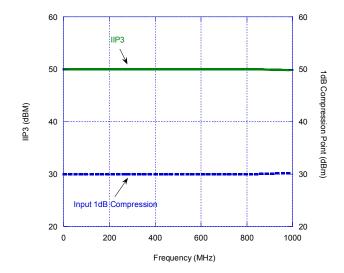
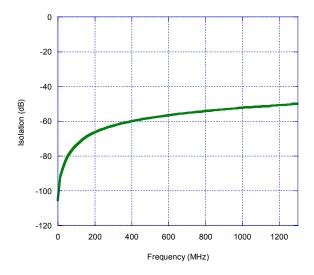



Figure 7. Isolation

Typical Performance Data @ +25 °C (75-ohm impedance)

Figure 8. RF1 Return Loss (CTRL = High)

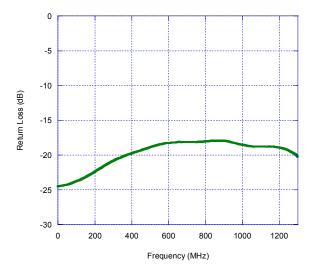


Figure 9. RF2 Return Loss (CTRL = High)

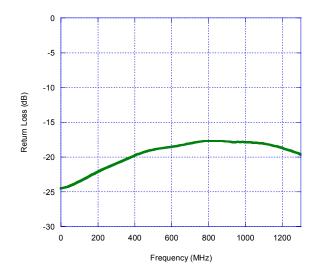
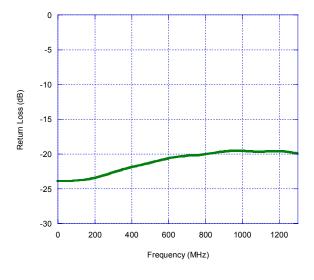
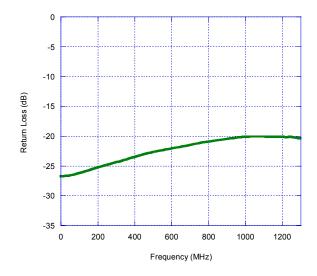


Figure 10. RF1 Return Loss (CTRL = Low)

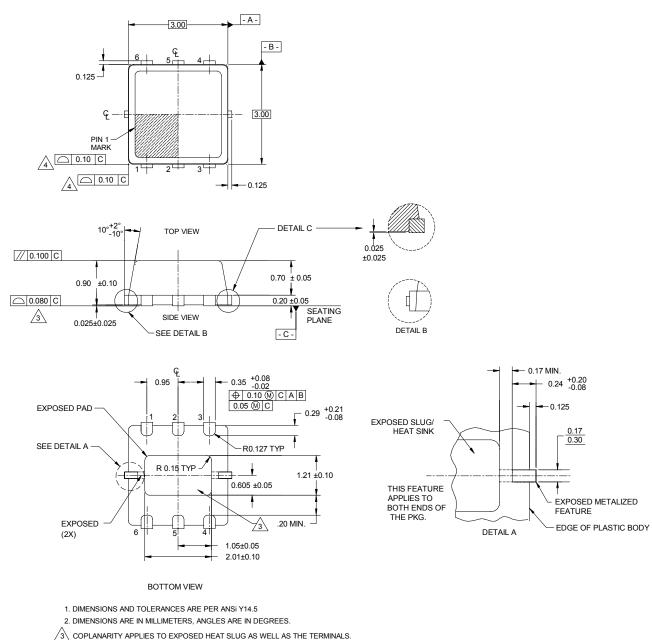

Figure 11. RF2 Return Loss (CTRL = Low)

Figure 12. Package Drawing

6-lead MLPM

Table 6. Ordering Information

Order Code	Part Marking	Description	Package	Shipping Method
4232-01	4232	PE4232-06MLP3x3-12800F	6-lead 3x3mm MLPM	12800 units / Canister
4232-02	4232	PE4232-06MLP3x3-3000C	6-lead 3x3mm MLPM	3000 units / T&R
4232-00	PE4232-EK	PE4232-06MLP3x3-EK	Evaluation Board	1 / Box

4 PROFILE TOLERANCE APPLIES TO PLASTIC BODY ONLY.

Sales Offices

United States

Peregrine Semiconductor Corp.

6175 Nancy Ridge Drive San Diego, CA 92121 Tel 1-858-455-0660 Fax 1-858-455-0770

Europe

Peregrine Semiconductor Europe

Aix-En-Provence Office Parc Club du Golf, bat 9 13856 Aix-En-Provence Cedex 3 France Tel 33-0-4-4239-3360 Fax 33-0-4-4239-7227

Japan

Peregrine Semiconductor K.K.

The Imperial Tower, 15th floor 1-1-1 Uchisaiawaicho, Chiyoda-ku Tokyo 100-0011 Japan

Tel: 03-3507-5755 Fax: 03-3507-5601

Australia

Peregrine Semiconductor Australia

8 Herb Elliot Ave. Homebush, NSW 2140 Australia

Tel: 011-61-2-9763-4111 Fax: 011-61-2-9746-1501

For a list of representatives in your area, please refer to our Web site at: http://www.peregrine-semi.com

Data Sheet Identification

Advance Information

The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The data sheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a PCN (Product Change Notice).

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Peregrine products are protected under one or more of the following U.S. patents: 6,090,648; 6,057,555; 5,973,382; 5,973,363; 5,930,638; 5,920,233; 5,895,957; 5,883,396; 5,864,162; 5,863,823; 5,861,336; 5,663,570; 5,610,790; 5,600,169; 5,596,205; 5,572,040; 5,492,857; 5,416,043. Other patents are pending.

Peregrine, the Peregrine logotype, Peregrine Semiconductor Corp., and UTSi are registered trademarks of Peregrine Semiconductor Corporation.

Copyright © 2002 Peregrine Semiconductor Corp. All rights reserved.

File No. 70/0054~01A | UTSi ® CMOS RFIC SOLUTIONS