

New Product

Vishay Semiconductors

TRANSZORB® Transient Voltage Suppressors

Steady State Power 1W Peak Pulse Power 300W Breakdown Voltage 530, 550V

DO-204AL (DO-41 Plastic)

Dimensions are in inches and (millimeters)

Features

- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Protects power IC controllers such as TOPSwitch®
- Glass passivated junction
- High temperature soldering guaranteed: 250°C/10 seconds at terminals
- · Excellent clamping capability
- · Available in unidirectional only

Mechanical Data

Case: JEDEC DO-204AL molded plastic body over passivated junction

Terminals: Axial leads, solderable per MIL-STD-750, Method 2026

Polarity: The band denotes the cathode, which is positive with respect to the anode under normal TVS operation

Mounting Position: Any Weight: 0.012oz., 0.3g

Packaging Codes – Options (Antistatic):

51 - 1K per Bulk box, 10K/carton

54 – 5.5K per 13" paper Reel

(52mm horiz. tape), 16.5K/carton

73 - 3K per horiz. tape & Ammo box, 30K/carton

Maximum Ratings and Thermal Characteristics TA= 25°C unless otherwise noted.

Parameter	Symbol	P4KE530	P4KE550	Unit
Steady state power dissipation (Note 3)	P _{M(AV)}	1.0		W
Peak pulse power dissipation (Note 1, 2, Fig. 1)	P _{PPM}	Minimum 300		W
Stand-off voltage	VwM	477	495	V
Typical thermal resistance junction-to-lead	R⊖JL	27		°C/W
Typical thermal resistance junction-to-ambient	R _Θ JA	75		°C/W
Operating junction and storage temperature range	TJ, TSTG	−55 to +150		°C

Electrical Characteristics TA= 25°C unless otherwise noted.

Parameter		Symbol	P4KE530	P4KE550	Unit
Minimum breakdown voltage at 100μA		V(BR)	530	550	V
Max. clamping voltage at 400mA, 10/1000μs-waveform		Vc	760		V
Maximum DC reverse leakage current at Vwm		ID	5.0		μΑ
Typical temperature coefficient of V(BR)			650		mV°C
Typical capacitance (Note 4)	at 0V at 200V	Сл	9 7.	-	pF

Notes: (1) Non repetitive current pulse per Fig.3 and derated above 25°C per Fig. 2

- (2) Peak pulse power waveform is $10/1000 \mu s$
- (3) Lead temperature at 75°C = T_L
- (4) Measured at 1MHz

Vishay Semiconductors

Ratings and Characteristic Curves (TA = 25°C unless otherwise noted)

Application Notes

- Respect Thermal Resistance (PCB Layout) as the temperature coefficient also contributes to the clamping voltage.
- Select minimum breakdown voltage, so you get acceptable power dissipation and PCB tie point temperature. Devices with higher breakdown voltage will have a shorter conduction time and will dissipate less power.
- Clamping voltage is influenced by internal resistance design approximation is 7V per 100mA slope.
- Keep temperature of TVS lower than TOPSwitch® as a recommendation.
- Maximum current is determined by the maximum T_J and can be higher than 300mA. Contact supplier for different clamping voltage / current arrangements.
- Minimum breakdown voltage can be customized for other applications. Contact supplier
- TOPSwitch® is a registered trademark of Power Integrations, Inc.

www.vishay.com 23-Jan-02