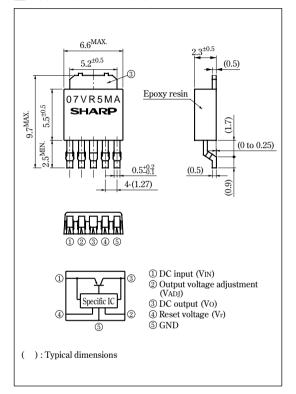
(Unit: mm)

# **PQ07VR5MAZ Series**

Low Power-Loss Voltage Regulators with Reset Signal Generating Function in Detecting Input Voltage Drop


### Features

- Built-in reset signal generating function (The reset detection voltage can be custom-ordered in the range of 3.5 to 4.5V.)
- Low power-loss(Dropout voltage: Max. 0.5V at Io=0.3A)
- Compact, surface mount package (Equivalent to SC-63)
- Variable output voltage type (1.5 to 7V)
- Overcurrent protection and overheat protection function
- Tape-packaged products and sleeve-packaged products are available.

### Applications

- Power supplies for AV, OA equipment, and various electronic equipment
- CD-ROM drives and CD-R drives
- DVD-ROM drives

### Outline Dimensions



# Absolute Maximum Ratings

|                                        |        |             | ,    |
|----------------------------------------|--------|-------------|------|
| Parameter                              | Symbol | Rating      | Unit |
| *1Input voltage                        | Vin    | 10          | V    |
| **1 Output adjustment terminal voltage | Vadj   | 7           | V    |
| *1Reset output voltage                 | Vr     | 10          | V    |
| Output current                         | Io     | 500         | mA   |
| Reset output current                   | Ir     | 5           | mA   |
| *2 Power dissipation                   | PD     | 8           | W    |
| *3 Junction temperature                | Tj     | 150         | °C   |
| Operating temperature                  | Topr   | -20 to +80  | °C   |
| Storage temperature                    | Tstg   | -40 to +150 | °C   |
| Soldering temperature                  | Tsol   | 260 (10s)   | °C   |

<sup>\*1</sup> All are open except GND and applicable terminals

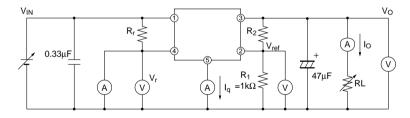
#### **SHARP**

<sup>\*2</sup> PD:With infinite heat sink

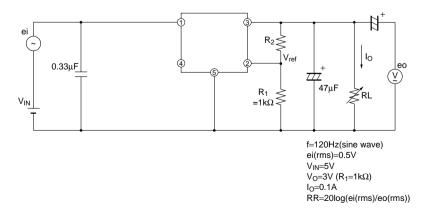
<sup>\*\*3</sup> Overheat protection may operate at the condition T)=125°C to 150°C

<sup>•</sup> Please refer to the chapter " Handling Precautions ".

# Electrical Characteristics (Unless otherwise specified, condition shall be V<sub>IN</sub>=5V, Vo=3V (R<sub>1</sub>=1kΩ), Io=300mA, T<sub>a</sub>=25°C)

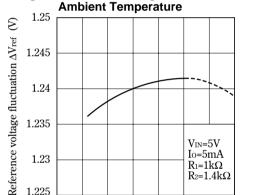

| Parameter                                    | Symbol           | Conditions                                       | MIN.  | TYP.  | MAX.  | Unit |
|----------------------------------------------|------------------|--------------------------------------------------|-------|-------|-------|------|
| Input voltage                                | Vin              | _                                                | 3.4   | _     | 10    | V    |
| Output voltage                               | Vo               | _                                                | 1.5   | _     | 7     | V    |
| Load regulation                              | RegL             | Io=5mA to 0.5A                                   | _     | 0.3   | 2     | %    |
| Line regulation                              | RegI             | V <sub>IN</sub> =5 to7V, Io=5mA                  | _     | 0.5   | 2     | %    |
| Ripple rejection                             | RR               | Refer to Fig.2                                   | 45    | 60    | _     | dB   |
| Dropout voltage                              | VI-O             | $V_{IN}=3.4V$                                    | _     | _     | 0.5   | V    |
| Reference voltage                            | $V_{ref}$        | ı                                                | 1.22  | 1.245 | 1.27  | V    |
| Temperature coefficient of reference voltage | TcVref           | $T_j=0$ to $125^{\circ}$ C, $I_0=5$ mA           | _     | ±1    |       | %    |
| Quiescent current                            | $I_{\mathrm{q}}$ | Io=0A                                            | _     | _     | 5     | mA   |
| Input detection voltage                      | Vri              | $V_r$ 0.8, $R_r$ =10 $k\Omega$ , $I_0$ =5 $mA$   | 4.116 | 4.2   | 4.284 | V    |
| "L" Reset output voltage                     | $V_{rl}$         | 2.5V <v<sub>IN<v<sub>ri, Io=5mAV</v<sub></v<sub> | _     | _     | 0.8   | V    |
| Hysteresis voltage                           | $\Delta V_{ri}$  | Rr=10kΩ                                          | 50    | 150   | 200   | mV   |
| Reset output leak current                    | $I_{rlk}$        | $V_r$ =5 $V$ , $R_r$ =10 $k\Omega$               | _     | _     | 1     | μΑ   |

# ■ Reset Threshold Voltage Line-up


| Parameter               |            | Symbol            | Conditions                                    | MIN.  | TYP. | MAX.  | Unit |
|-------------------------|------------|-------------------|-----------------------------------------------|-------|------|-------|------|
| Reset threshold voltage | PQ07VR5MAZ | - V <sub>rt</sub> | *4 V <sub>r</sub> ≤0.8V, R <sub>r</sub> =10kΩ | 4.116 | 4.2  | 4.284 | - W  |
|                         | PQ07VR5MBZ |                   |                                               | 4.214 | 4.3  | 4.386 |      |
|                         | PQ07VR5MCZ |                   |                                               | 4.312 | 4.4  | 4.488 | ] v  |
|                         | PQ07VR5MDZ |                   |                                               | 4.41  | 4.5  | 4.59  |      |

<sup>\*4</sup> Output voltage shall be the value when input voltage lowers and Vr becomes low

### Fig.1 Test Circuit




# Fig.2 Test Circuit for Ripple Rejection



Fia.3 Power Dissipation vs. Ambient Temperature 10 PD: With infinite heat sink 8  $\mathbb{R}$ Power dissipation PD 5 0 -20 20 40 60 80 Ambient temperature Ta (°C)

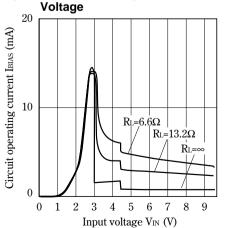
Note) Oblique line portion:Overheat protection may operate in this area. Reference Voltage Fluctuation vs.



1.23

1.225

-50


-250 25 50 75

Ambient temperature Ta (°C) Circuit Operating Current vs. Input

Io=5mA

 $R_1=1k\Omega$  $R_2=1.4k\Omega$ 

100 125



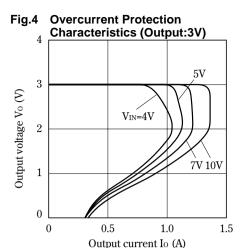



Fig.6 Output Voltage vs. Input Voltage (Output:3V)



Fig.8 Quiescent Current vs. Junction

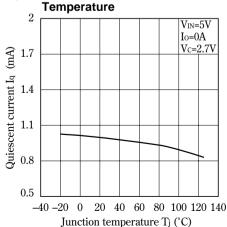



Fig.9 Reset Output Voltage vs. Input Voltage

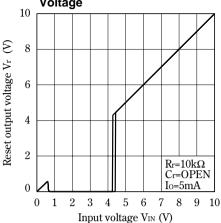



Fig.11 Hysteresis Voltage vs. Junction Temperature

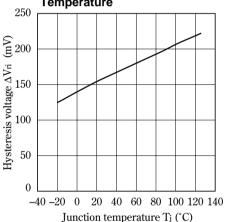



Fig.13 Ripple Rejection vs. Output Current

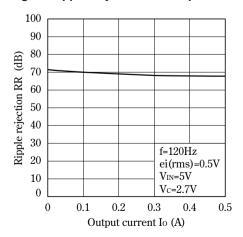



Fig.10 Input Detection Voltage vs. Junction Temperature

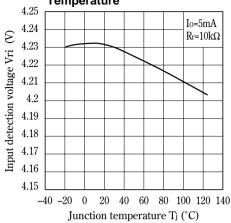



Fig.12 Ripple Rejection vs. Input Ripple Frequency

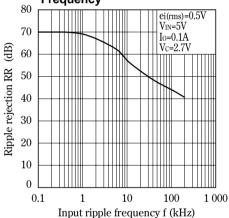
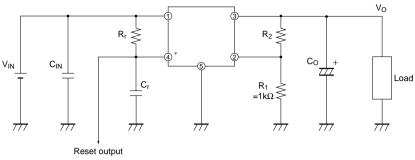




Fig.14 Typical Application



\*Open collector

Fig.15 Reset Output Response (Typical Value)

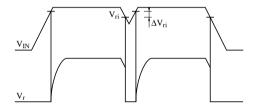
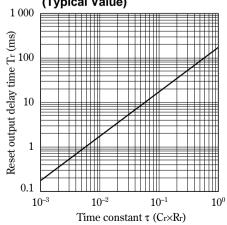




Fig.16 Reset Output Delay Time vs. Time Constant (Typical Value)



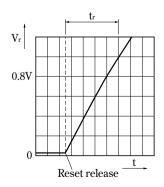



Fig.17 External Connection

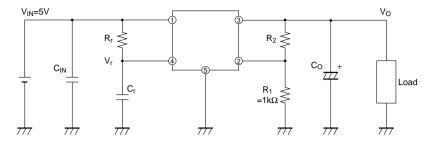
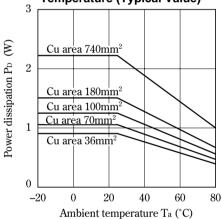
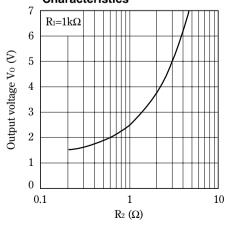
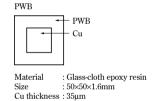
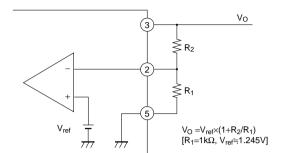



Fig.18 Power Dissipation vs. Ambient Temperature (Typical Value)



Fig.19 Output Voltage Adjustment Characteristics





# ■ Setting of Output Voltage

Output voltage is able to set from 1.5V to 7V when resistors  $R_1$  and  $R_2$  are attached to @, @, @ terminals. As for the external resistors to set output voltage, refer to the figure below and Fig.19.



### NOTICE

- The circuit application examples in this publication are provided to explain representative applications of SHARP
  devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes
  no responsibility for any problems related to any intellectual property right of a third party resulting from the use of
  SHARP's devices.
- Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP
  reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents
  described herein at any time without notice in order to improve design or reliability. Manufacturing locations are
  also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage
  caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used
  specified in the relevant specification sheet nor meet the following conditions:
  - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
    - --- Personal computers
    - --- Office automation equipment
    - --- Telecommunication equipment [terminal]
    - --- Test and measurement equipment
    - --- Industrial control
    - --- Audio visual equipment
    - --- Consumer electronics
  - (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
    - --- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
    - --- Traffic signals
    - --- Gas leakage sensor breakers
    - --- Alarm equipment
    - --- Various safety devices, etc.
  - (iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
    - --- Space applications
    - --- Telecommunication equipment [trunk lines]
    - --- Nuclear power control equipment
    - --- Medical and other life support equipment (e.g., scuba).
- Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications
  other than those recommended by SHARP or when it is unclear which category mentioned above controls the
  intended use.
- If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this publication.