
AN727
Credit Card Reader Using a PIC12C509
INTRODUCTION

Many people carry one or more magnetically encoded
cards with them for accessing a range of services.
Perhaps the most common example is the credit card
or bank ATM card, but increasingly they are being used
for access control, employee time logging, customer
loyalty schemes, club membership and other applica-
tions. This application note describes data formats
found on these cards, and details an algorithm to
decode that data with suitable hardware.

Often a card reader will be incorporated into a point-of-
sale (POS) terminal or built into a security device. In a
larger system, the reader control electronics may be
integrated with other devices, however it is often useful
to use a microcontroller to decode the data from the
card remotely and send the data via a serial link to a
host processor. The PIC12C509 is a good example of
a suitable microcontroller, as it requires few external
components, and is small enough to be incorporated
into the card reader assembly itself. This allows a self-
contained card reader with serial data output to be built.

This document details the typical data found on a bank
card, but there are also many custom-encoded cards in
circulation for other purposes. However, even these
cards usually conform to the ISO Track 2 standard
which will be described later.

DATA ENCODING

Data is encoded on the magnetic stripe on a card in a
similar way to original computer tape systems, mainly
because at the time they were introduced, tape tech-
nology was widely available. While the details of the
card data formats given here are brief, a full description
of how the data is physically encoded on the magnetic
stripe can be found in International Standards Organi-
zation document ISO7811/2-1985. In the US, this is
also known as ANSI x 4.16 -1983, and in the UK, as
BS7106:Part 2:1989. Full specifications for all aspects
of "identification cards", including the physical size of
the card and the embossed information on the front,
can be found in ISO7811 parts 1 to 6.

The magnetic stripe on bank cards and credit cards
typically has three tracks of information. Track 1 is
alphanumeric and usually records the card holder’s
name in addition to their card number. Track 2 (the cen-
ter track) is numeric only and encodes the card holder’s
card number and expiration date. Track 3 is typically
not used, or reserved for the card organization’s own
use, and has many different data encoding standards.
To read each track requires a magnetic reading head at
the appropriate distance from the edge of the card.
The position of each track is shown in Figure 1.

FIGURE 1: POSITION OF ISO TRACKS 1,
2 AND 3

This application note deals specifically with data
encoded on Track 2. This data is numeric only and so
is compact and easy to read, and there are many card
reading modules with a single head in the Track 2 posi-
tion available. In recent years, there has been a trend
for organizations to read data from Track 1, thus allow-
ing POS terminals to display the cardholder’s name on
the receipt.

Author: Andrew M Errington

0.548" 0.408" 0.278"

0.110"Track 1

Track 2

Track 3
 1999 Microchip Technology Inc. DS00727A-page 1

AN727
Most card readers have three wires for data output,
plus of course, one each for power and ground. They
are typically powered from a 5V DC supply with TTL
compatible output signals. Inside the reader assembly
is a magnetic reader head, like a cassette tape head. A
small circuit converts the analog signal from the head
into clock and data signals, and a signal to indicate a
card is present. For this application note, a Panasonic

card reader (part no. PCR100-ND from Digi-Key) is
used. Typically the signals are all active low, which
means a high voltage (+5V) represents logic ’0’ and a
low voltage (0V) represents logic ’1’. Table 1 shows
details of the connection to the reader module, with
wire colors for the Panasonic interface cable (Digi-Key
PCR101-ND).

TABLE 1: CARD READER MODULE CONNECTIONS

For a reader with more than one read head there will be
more than one clock and data line, and the software to
read the card becomes more complicated.

Figure 2 shows a representation of the signals gener-
ated by the card reader as a card is passed through.
First, CLD goes low to indicate a card is in the reader,
then a series of pulses on RCL indicate when the data
on the RDT pin is valid. The sequence shown is for the

first character on Track 2, which is the start sentinel
1011b. This is encoded LSb first and followed by a par-
ity bit.

Since the card is being passed through the reader by a
human, the timing of the RCL pulse will be irregular, but
the speed of the card as it passes the read head is so
slow with respect to the operation of the microcontrol-
ler’s sampling loop, that this is not really a problem.

FIGURE 2: CARD READER SIGNALS

Wire Color Function Description

Brown CLD Card presence indicator. When low, a card is in the reader.

Red RCL Clock signal. When low, the data bit on the RDT pin is valid.

Orange RDT Data signal. Data bits are read from the card sequentially and output on this
pin. When low, the data bit is a '1' and when high, it is a '0'. The data is only
valid when the RCL pin is low.

Yellow +5V supply Connect to power supply.

Green 0V Connect to ground.

Blue Frame Ground Connect to ground if necessary.

D0 D1 D2 ParityD3

1 1 0 1 0

CLD

RCL

RDT
DS00727A-page 2  1999 Microchip Technology Inc.

AN727
CARD DATA FORMAT

Data is encoded LSb first on the three tracks as follows:

Track 1 - IATA

The data standard for Track 1 was developed by the
International Air Transportation Association (IATA) and
contains alphanumeric information for airline ticketing
or other database accesses. On a credit card, this
track typically contains the cardholder’s name as
embossed on the front of the card. The specification
allows up to 79 characters. Each character is 7 bits
long, comprising a 6 bit character code and a parity bit.
The data is encoded at 210 bpi (bits per inch).

SS... Start Sentinel

FC..Format Code

PAN...Primary Account Number (19 digits max.)

FS .. Field Separator

CC ..Country Code (3 characters max.)

Name .. Name (26 characters max.)

ES.. End Sentinel

LRC ... Longitudinal Redundancy Check Character

Additional Data:

Expiration Date (4 characters)

Interchange Designator (1 Character)

Service Code (2 characters)

Custom Data

Track 2 - ABA

The data standard for Track 2 was developed by the
American Bankers Association (ABA), and contains
numeric information only. On a credit card, this track
typically contains the cardholder’s credit card number
as embossed on the front of the card. The specification
allows up to 40 digits. Each digit is 5 bits long, compris-
ing a 4-bit BCD digit and a parity bit. The data is
encoded at 75 bpi.

SS... Start Sentinel

PAN...Primary Account Number (19 digits max.)

FS .. Field Separator

ES.. End Sentinel

LRC ... Longitudinal Redundancy Check Character

Additional Data:

Country Code (3 characters)

Expiration Date (4 characters)

Interchange Designator (3 Character)

Service Code (3 characters)

Custom Data

SS FC PAN FS CC Name FS Additional Data ES LRC

SS PAN FS Additional Data ES LRC
 1999 Microchip Technology Inc. DS00727A-page 3

AN727
Track 3 - THRIFT

The data standard for Track 3 was developed by the
Thrift Industry, and contains numeric only information
which may be re-recorded or updated when the card is
used. There are many different uses and specifications
for Track 3, so no details are shown here. The Track 3
specification allows up to 107 digits. Each digit is 5 bits
long, a 4-bit BCD digit and a parity bit. The data is
encoded at 210 bpi.

While the Primary Account Number (PAN) can be up to
19 digits, a MasterCard PAN is variable up to 16 digits,
and VISA is 13 or 16 digits, including a modulo-10
check digit.

Each of the three specifications includes three special
characters: a start sentinel, an end sentinel and an
LRC (Longitudinal Redundancy Check) character. This
means that the actual number of characters that can be
stored is three less than the maximum specified. The
sentinel codes are special character codes that are
used to tell the microprocessor that it is reading the
data where the start and end of the data is. Any unused
space before or after the data on the card is filled with
zeroes. The LRC character provides one of the error
detection mechanisms described below.

ERROR DETECTION

There are two error detection methods incorporated
into the data encoding standard. The first is parity
checking. For alphanumeric data, there are 7 bits per
character. The lower 6 bits are the character itself, and
the MSb is a parity bit. Each character is encoded with
odd parity, meaning that the total number of ’1’s in the
character will be odd. Similarly for numeric data, there
are 5 bits per character, 4 are the character itself, and
the MSb is the parity bit. This is shown in Table 2 and
Table 3. To check the parity, count the number of ’1’s in
each character as it is read from the card. If the count
is even, then there was a parity error when reading that
character.

The LRC is a character code which is calculated when
the card is written and checked when the card is read.
It contains a bit pattern that makes the total number of
’1’s encoded in the corresponding bit location of all the
characters (including the start and end sentinel and the
LRC itself) in the data on that track even. To check the
LRC, XOR all of the character codes, ignoring the parity
bits, as they are read from the card, including the start
and end sentinels and the LRC itself. The result
(excluding the parity bit) should be zero.

The reason for having two error detection methods is to
make the error detection more robust. For example, if
a character is read with two bits wrong, the parity will
appear to be okay, but the LRC check will fail.
DS00727A-page 4  1999 Microchip Technology Inc.

AN727
CHARACTER SET

TABLE 2: TRACK 1 AT 7 BITS PER CHARACTER (PARITY BIT NOT SHOWN)

Characters not shown are not supported in the alpha-
numeric character set, although they may appear on
the card in the LRC position. The three shaded char-
acters may differ for national character sets.

TABLE 3: TRACK 2 AND 3 AT 5 BITS PER CHARACTER (PARITY BIT SHOWN)

D5:D4

D3:D0 00 01 10 11

0000 SPC 0 P

0001 1 A Q

0010 2 B R

0011 3 C S

0100 $ 4 D T

0101 %(start sentinel) 5 E U

0110 6 F V

0111 7 G W

1000 (8 H X

1001) 9 I Y

1010 J Z

1011 K [

1100 L /

1101 - M]

1110 . N ^(separator)

1111 / ?(end sentinel) O

P D3 D2 D1 D0

1 0 0 0 0 0

0 0 0 0 1 1

0 0 0 1 0 2

1 0 0 1 1 3

0 0 1 0 0 4

1 0 1 0 1 5

1 0 1 1 0 6

0 0 1 1 1 7

0 1 0 0 0 8

1 1 0 0 1 9

1 1 0 1 0

0 1 0 1 1 Start Sentinel

1 1 1 0 0

0 1 1 0 1 Separator

0 1 1 1 0

1 1 1 1 1 End Sentinel
 1999 Microchip Technology Inc. DS00727A-page 5

AN727
Data Decoding

Knowing what the card reader signals mean, and how
the characters are encoded, makes it a simple matter
to devise an algorithm to decode the data from a card
when it is swiped through the reader. The
card509.asm file for the PIC12C509 is very compact
and may be easily adapted for other PICmicro®

devices.

The program is designed to read data from a Track 2
magnetic card reader, because equipment for reading
this track is widely available, and Track 2 has a man-
ageably small number of bits encoded. This is impor-
tant since the data is buffered before sending it out via
the serial port. As each character is read, its parity bit
is checked, then stored in a memory buffer. After read-
ing the end sentinel, the LRC is read and checked, and
all of the data characters in the buffer are sent out seri-
ally from an I/O pin. If there are any parity errors, an
error flag is set, and if the LRC check is bad, then
another error flag is set. The state of these two flags is
indicated by two characters sent after the card data.
On power-up and after every card read, the PICmicro
device sends ’Ready’ from the serial port.

The card data is stored in a memory buffer, which is a
block of data memory not used by any variable in the
program. Since each character is a 4-bit BCD digit,
each byte can hold two characters, so 20 bytes are
reserved, enough to hold 40 characters. In fact, space
is only needed for 37 characters as there is no need to
store the start and end sentinels or the LRC character.

On power-up, all of the program memory from 0x07 to
0x0F is cleared. This is not strictly necessary, but some
registers are not specifically initialized on reset and
may contain random data on power up.

The main loop starts by clearing the memory buffer and
initializing the memory pointers and other variables.
When starting, the bad_LRC flag is set and it is only
cleared if a bad LRC is not found after reading all the
data from the card. Also, the 4 bits that hold the LRC
check in the parity register are initialized to the same bit
pattern as the start sentinel. This is because the start
sentinel is never stored, but must be included in the
LRC calculation.

Next, the program waits to see if a card is present and
loops indefinitely while the CLD signal is high. Once it
is low, the program drops through to another loop to
wait for the RCL line to go low. When the RCL line is
low, the data line is valid, so the RDT line can be tested.
Remember the RDT line is active low, so if it is high, the
data on the card is a ’0’ and the carry flag is cleared. If
RDT is low, the data on the card is a ’1’, therefore the
carry flag is set and the parity bit in the parityLRC
register is toggled. Toggling the parity bit is like having
a one bit counter, which is all that is needed to count
’1’s and see if there is an odd number.

A byte of memory is reserved as an input buffer,
char_buf, and a single bit as a flag, found_start.
Each time a bit is read from the reader, it is placed in

the carry flag as described above, and the input buffer
is shifted right to roll the bit from the carry flag into the
MSb. This means that all of the characters are formed
in the upper 5 bits of char_buf. The found_start
flag is cleared at the beginning of the main loop, and
while it is clear, the top 5 bits are checked for the start
sentinel bit pattern every time a new bit is rotated in
from the reader. As soon as the start sentinel is seen,
the found_start flag is set.

When the carry flag is rotated into the input buffer with
RRF char_buf, the LSb of char_buf rotates out into
the carry. Until the start sentinel is seen, the low three
bits of char_buf are continually cleared, so a zero
rotates out and is of no concern. Once the start senti-
nel is seen, the bits that were read need to be grouped
into 5-bit characters. This is done by setting bit 4 of
char_buf when ready to read a new character. When
5 bits have been rotated in from the reader, the bit that
was set will be rotated out into the carry flag. This bit is
known as a sentinel bit (not to be confused with the
start and end sentinels on the card).

The carry flag is checked to see if the sentinel bit has
rolled out, and if it has, then the top 5 bits of char_buf
contain a character from the card. The program checks
the parity (by looking at the parity bit in the parityLRC
register), then XORs the character with the LRC to
update it. If the character is not the end sentinel or
LRC, the parity bit is discarded and the 4-bit character
is stored in the memory buffer. If it was the end sentinel,
a flag (found_end) is set to show that the next charac-
ter will be the LRC and that it’s possible to finish.

When the last character (the LRC) has been read, the
program jumps to the dump_buffer routine, or if the
buffer has been filled, sets the buf_end flag, which
causes a jump there.

Characters are stored and fetched from the memory
buffer by the get_put_char routine. The variable
buf_ptr effectively points to a particular nibble in the
PIC12C509 register banks. The read_buf flag indi-
cates whether to store or fetch from the buffer, and the
character is moved between char_buf and the buffer
accordingly. The buffer locations are not in a contigu-
ous address space and some care must be taken to
deal with register banks correctly.

The dump_buffer routine loops through the memory
buffer address space, takes each character (each nib-
ble), converts it to an ASCII code and then calls the
send_char routine to send the character out serially.
If the PICmicro device is connected to a serial port on
a PC running a terminal program, the data from the
card will appear in the terminal window. When all char-
acters have been sent, a 'P' is sent if there was a parity
error, and an 'L', if there was an LRC error. If there were
no errors, a period '.' is sent, then the program loops
back, clears the buffer, and waits for another card.

A simple serial output routine, send_char, sends the
character code held in the W register serially from an
output pin. It is timed to run at 1200 baud, no parity, 1
DS00727A-page 6  1999 Microchip Technology Inc.

AN727
stop bit with a 4 MHz oscillator, and the PC serial port
should be configured appropriately to receive it. The
send_char routine could easily be replaced by a rou-
tine that displays the character on an LCD module, for
example. Higher baud rates could be achieved using
an external crystal, but the internal oscillator has been
seen to be stable enough to run at 1200 baud with no
errors.

CIRCUIT LAYOUT

As can be seen from Figure 3, there is very little to do
other than wire up the PICmicro device directly to the
reader. The 5V supply can be taken from a bench
Power Supply Unit, or a 9V battery and a voltage regu-
lator. The connections to the reader and to the PC
serial port should match the I/O pin declarations in the
code. For this application the PICmicro device should
be programmed for internal oscillator mode, internal
MCLR and watchdog disabled. The connections to the
PC via the serial port should use a level shift IC, such
as the MAX232A from Maxim. (This device is not
shown in Figure 3.)

A simple program is included, CARDLOG.EXE, which
monitors a PC serial port for data from the reader circuit
shown. It records each unique card number as it is
seen, and logs the date and time it was used, together
with a notification when the number was seen for the
first time. Once the card numbers are in a list in a PC
program, they can be easily manipulated for the appli-
cations mentioned earlier in this document. However, it
would be possible to extend the CARD509.ASM pro-
gram to store card numbers in an external EEPROM,
for example, or to verify card numbers read against
those stored in an EEPROM to construct a stand-alone
access control system or card data logger.

CONCLUSION

Although smart cards are gaining greater acceptance,
magnetic cards have been around for some time, and it
seems they will remain in use for a few years to come.
This application note demonstrates the simplicity of
reading magnetic card data using a low-cost embed-
ded microcontroller, and interfacing to a larger, more
complex system for many diverse applications.

FIGURE 3: CIRCUIT SIMPLIFIED BLOCK DIAGRAM

IC1

PIC12C509

+5V

CLD

RCL

RDT

+5V

GND

0V

GND

TxD

To ReaderTo PC Serial Port

9-pin connector
TxD to pin 2

GND to pin 5

0.1 mF

8

6

5

1

2

3

4

7

Level

Conversion
 1999 Microchip Technology Inc. DS00727A-page 7

AN727
FIGURE 4: SIMPLIFIED FLOW DIAGRAM

N

N

N

Y

Y

N

Y

0 1

Y

N

N

Y

N

Y

Y

N

Y

N

Y

Prepare For Next Character

Set found_start

Is SS in

Character

Buffer?

Wait for Data

no longer

valid CLK = 0

Has Start

Sentinel

Been Seen

Yet?

Check for

Sentinel Bit

C = 1?

Main Loop

Main Loop

Rotate c into Character Buffer

Dump Buffer

Is Buffer

Full?

Set found_end

Is End

Sentinel in

Characater

Buffer?

Discard

Parity Bit and

Store

Character?

Clear
bad_LRC Flag

Data Bit is ’0’
Clear Carry

Data Bit is ’1’

Set Carry and Toggle

Parity Counter

Read Data
Line

Wait for Data

Valid

CLK = 0?

Has End

Sentinel

Been Seen

Yet?

Update LRC

Is Parity Ok?

Is LRC Ok?

Set
bad_parity

Flag

Wait for Card

Present

Card = 0?

Send "Ready" From
Serial Port

Start

Clear Memory Buffer
Initialize Variables

Initialize PORTS
Clear Variables
DS00727A-page 8  1999 Microchip Technology Inc.

AN727
APPENDIX A: SOURCE CODE

MPASM 01.50 Released CARD509.ASM 9-29-1999 14:09:04 PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00001 ; Card Reader
 00002 ;
 00003 ; Written by A M Errington
 00004 ; Device PIC 12C509 (8 pins)
 00005 ; Clock speed 1Mhz Tcy=1us
 00006 ; Resonator 4MHz internal RC
 00007 ; Reset circuit Internal MCLR
 00008 ; Watchdog Disabled
 00009 ;
 00010 ; Uses Panasonic track 2 card reader or any typical magnetic
 00011 ; card reader mechanism. Sends data out serially at 1200bd.
 00012 ;
 00013 ; This software is Copyright 1998 Andrew M Errington
 00014 ;
 00015 ; This file is best viewed with hard tabs set to 4 character
 00016 ; spacing.
 00017
 00018 TITLE "Card Reader"
 00019
 00020 LIST C=120, b=4
 00021 LIST P=12C509
 00022
 00023 ERRORLEVEL -305 ; Suppress "Using default
 00024 ; destination of 1 (file)."
 00025
 00026 ; **
 00027 ; General Equates
 00028
 00029 ; PIC12C509 standard registers
 00000000 00030 INDF EQU 0x00
 00000001 00031 TMR0 EQU 0x01
 00000002 00032 PC EQU 0x02
 00000003 00033 STATUS EQU 0x03
 00000004 00034 FSR EQU 0x04
 00000005 00035 OSCCAL EQU 0x05
 00000006 00036 GPIO EQU 0x06 ; lower 5 bits only
 00037
 00038
 00039 ; I/O port bits
 00000000 00040 GP0 EQU 0x00
 00000001 00041 GP1 EQU 0x01
 00000002 00042 GP2 EQU 0x02 ; Shared with T0CKI
 00000003 00043 GP3 EQU 0x03 ; Always input, shared with MCLR, Vpp
 00000004 00044 GP4 EQU 0x04 ; Shared with OSC2
 00000005 00045 GP5 EQU 0x05 ; Shared with OSC1, clkin
 00046
 00047
 00048 ; Status register bits
 00000000 00049 C EQU 0x00 ; Carry flag
 00000001 00050 DC EQU 0x01 ; Digit carry flag
 00000002 00051 Z EQU 0x02 ; Zero flag
 00000003 00052 PD EQU 0x03 ; Power down flag
 00000004 00053 TO EQU 0x04 ; WDT timeout flag
 1999 Microchip Technology Inc. DS00727A-page 9

AN727
MPASM 01.50 Released CARD509.ASM 9-29-1999 14:09:04 PAGE 2
Card Reader

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00000005 00054 PA0 EQU 0x05 ; Program page select
 00000007 00055 GPWUF EQU 0x07 ; GPIO reset bit
 00056
 00057
 00058 ; Other control bits
 00000005 00059 RP0 EQU 0x05 ; Register page select
 00060
 00061
 00062 ; Other useful constants
 00000000 00063 LSB EQU 0x00
 00000007 00064 MSB EQU 0x07
 00065
 00066
 00067 ; Useful PIC macros
 00068 ; The BTFSS and BTFSC instructions can be confusing to read. It
 00069 ; is easier to read the code with macros for IFSET and IFCLR
 00070 ; meaning the opposite of SKPCLR and SKPSET respectively.
 00071
 00072 #DEFINE IFSET BTFSC
 00073 #DEFINE IFCLR BTFSS
 00074
 00075 #DEFINE IFZ SKPNZ
 00076 #DEFINE IFNZ SKPZ
 00077 #DEFINE IFC SKPNC
 00078 #DEFINE IFNC SKPC
 00079
 00080 #DEFINE SKPSET BTFSS
 00081 #DEFINE SKPCLR BTFSC
 00082
 00083
 00084 ; **
 00085 ; Card reader constants
 00086
 00000058 00087 start_code EQU b’01011000’ ; Start Sentinel bit pattern,
 00088 ; shifted up into the top 5 bits
 00089
 000000F8 00090 end_code EQU b’11111000’ ; End Sentinel bit pattern,
 00091 ; shifted up into the top 5 bits
 00092
 00093
 00094 ; PIC12C509 RAM location usage
 00095
 00000007 00096 buf_ptr EQU 0x07 ; card data buffer pointer (nibbles)
 00000008 00097 num_chr EQU 0x08 ; Number of characters read from card
 00000009 00098 count EQU 0x09 ; General 8 bit counter
 0000000A 00099 flag EQU 0x0A ; Control flags
 0000000B 00100 char_buf EQU 0x0B ; Character buffer, input and serial output
 0000000C 00101 parityLRC EQU 0x0C ; Parity/LRC workspace
 0000000D 00102 temp EQU 0x0D ; Temporary workspace
 00103 ; EQU 0x0E ; unused
 00104 ; EQU 0x0F ; unused
 00000010 00105 lo_mem EQU 0x10 ; Memory buffer start address:
 00106 ; EQU 0x11 ; Track 2 of the magnetic card contains
DS00727A-page 10  1999 Microchip Technology Inc.

AN727
MPASM 01.50 Released CARD509.ASM 9-29-1999 14:09:04 PAGE 3
Card Reader

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00107 ; EQU 0x12 ; at most 40 4-bit characters, including
 00108 ; EQU 0x13 ; the start sentinel, end sentinel and
 00109 ; EQU 0x14 ; LRC, so 20 bytes are reserved to store
 00110 ; EQU 0x15 ; all of them. In fact only 37 nibbles
 00111 ; EQU 0x16 ; are used as the start and end sentinels
 00112 ; EQU 0x17 ; and the LRC are never stored in this
 00113 ; EQU 0x18 ; application
 00114 ; EQU 0x19
 00115 ; EQU 0x1A
 00116 ; EQU 0x1B
 00117 ; EQU 0x1C
 00118 ; EQU 0x1D
 00119 ; EQU 0x1E
 00120 ; EQU 0x1F
 00121
 00122 ; 0x20 to 0x2F are mapped to 0x00 to 0x1F, so the buffer
 00123 ; continues from 0x30 onwards
 00124
 00125 ; EQU 0x30
 00126 ; EQU 0x31
 00127 ; EQU 0x32
 00000033 00128 hi_mem EQU 0x33 ; Memory buffer end
 00129 ; EQU 0x34 ; unused
 00130 ; EQU 0x35 ; unused
 00131 ; EQU 0x36 ; unused
 00132 ; EQU 0x37 ; unused
 00133 ; EQU 0x38 ; unused
 00134 ; EQU 0x39 ; unused
 00135 ; EQU 0x3A ; unused
 00136 ; EQU 0x3B ; unused
 00137 ; EQU 0x3C ; unused
 00138 ; EQU 0x3D ; unused
 00139 ; EQU 0x3E ; unused
 00140 ; EQU 0x3F ; unused
 00141
 00142
 00143 ; Derived constants
 00144
 00145 ; buf_sz is the actual number of nibbles available in the
 00146 ; buffer. If the buffer continues into Bank 1 care must be
 00147 ; taken to correct for the discontinuity in address space.
 00148 ; Here the assembler signals an error if portions of the buffer
 00149 ; are in the wrong banks.
 00150
 00151 if lo_mem > 0x1F
 00152
 00153 ERROR "Buffer start address (lo_mem) must be in Bank 0"
 00154
 00155 endif
 00156
 00157 if hi_mem > 0x1F && hi_mem < 0x30
 00158
 00159 ERROR "Buffer end address (hi_mem) must be in upper half of Bank 1"
 1999 Microchip Technology Inc. DS00727A-page 11

AN727
MPASM 01.50 Released CARD509.ASM 9-29-1999 14:09:04 PAGE 4
Card Reader

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00160
 00161 endif
 00162
 00163 if hi_mem <= 0x1F
 00164
 00165 buf_sz EQU ((hi_mem - lo_mem) + 1) * 2
 00166
 00167 else
 00168
 00000028 00169 buf_sz EQU ((hi_mem - lo_mem) - .15) * 2
 00170
 00171 endif
 00172
 00173
 00174 ; Flag register bit meanings
 00175
 00176 ; bit 7 6 5 4 3 2 1 0 -> found start sentinel
 00177 ; | | | | | | +-----> found end sentinel
 00178 ; | | | | | +--------> bad parity
 00179 ; | | | | +-----------> bad LRC
 00180 ; | | | +--------------> reached end of buffer
 00181 ; | | +-----------------> R/^W flag for buffer operations
 00182 ; | +--------------------> unused
 00183 ; +-----------------------> unused
 00184
 00000000 00185 found_start EQU 0
 00000001 00186 found_end EQU 1
 00000002 00187 bad_parity EQU 2
 00000003 00188 bad_LRC EQU 3
 00000004 00189 buf_end EQU 4
 00000005 00190 read_buf EQU 5
 00191
 00192
 00193 ; ParityLRC register bit meanings
 00194
 00195 ; bit 7 6 5 4 3 2 1 0 -> unused
 00196 ; | | | | | | +-----> unused
 00197 ; | | | | | +--------> unused
 00198 ; | | | | +-----------> LRC bit 0
 00199 ; | | | +--------------> LRC bit 1
 00200 ; | | +-----------------> LRC bit 2
 00201 ; | +--------------------> LRC bit 3
 00202 ; +-----------------------> parity bit
 00203
 00204 ; Note: Later code relies on these bits remaining in this position
 00205
 00206
 00207 ; I/O pin declarations
 00208
 00209 ; The card reader connects to +5V and 0V, and has three signal
 00210 ; lines connected to the following I/O pins:
 00211
 00000000 00212 ser_out EQU GP0 ; serial TxD pin to host
DS00727A-page 12  1999 Microchip Technology Inc.

AN727
MPASM 01.50 Released CARD509.ASM 9-29-1999 14:09:04 PAGE 5
Card Reader

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00000001 00213 card EQU GP1 ; ^CLD signal (low when card present)
 00000002 00214 clock EQU GP2 ; ^RCL signal (low when data valid)
 00000003 00215 signal EQU GP3 ; ^RDT signal from magstripe
 00216
 00217 ; GP4 and GP5 are still available for I/O or for a crystal if
 00218 ; required.
 00219
 00220
 00221 ; Compilation options
 00222
 00223 ; The invert_tx option changes the sense of the ser_out line
 00224
 00000000 00225 invert_tx EQU 0 ; 0 = Idle (logical ’1’) is 0V
 00226
 00227
 00228 ; **
 00229 ; Program code starts here
 00230 ; **
 00231
 00232 ; The PIC12C509 reset vector jumps to top of memory, then the
 00233 ; program counter rolls to 0x00 after loading the RC osc.
 00234 ; calibration value into W
 00235
0000 00236 ORG 0x00
0000 0025 00237 MOVWF OSCCAL
 00238
0001 0A31 00239 GOTO start
 00240
 00241
 00242 ; **
 00243 ; Subroutines
 00244 ;
 00245
 00246
 00247 ; **
0002 00248 send_char
 00249
 00250 ; Call send_char with an ASCII character code in W. This is a
 00251 ; simple serial output routine which sends the character out
 00252 ; serially on an output pin at 1200 baud, 8 data bits, no parity,
 00253 ; 1 stop bit. Assume the PIC oscillator is running at 4MHz.
 00254 ;
 00255 ; The baud rate of 1200 baud was chosen as it will work with the
 00256 ; 12C509 internal RC oscillator generating the timing. Higher
 00257 ; baud rates require tighter timing tolerance, and will therefore
 00258 ; require a crystal.
 00259 ;
 00260 ; Normally serial communication (RS232) requires a negative
 00261 ; voltage between -5V to -15V to represent a ’1’, and a positive
 00262 ; voltage between +5V and +15V to represent a ’0’. Most PC
 00263 ; serial ports will switch at +/-3V, and in fact will often work
 00264 ; with 0V and 5V, so it is possible to use a PIC I/O pin, set
 00265 ; high for a logic ’0’ and low for a logic ’1’. A 1k resistor
 1999 Microchip Technology Inc. DS00727A-page 13

AN727
MPASM 01.50 Released CARD509.ASM 9-29-1999 14:09:04 PAGE 6
Card Reader

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00266 ; placed in series with the Tx line will limit the current, and
 00267 ; This is probably acceptable for experimental purposes. For
 00268 ; robustness, however, it may be desirable to include level shift
 00269 ; IC, such as the MAX232A from Maxim. The invert_tx compilation
 00270 ; option can be used to alter the sense of transmitted bits if
 00271 ; necessary.
 00272 ;
 00273 ; At 1200 baud each bit cell is just over 833us in length. At
 00274 ; power up the serial output line is set to its idle state (logic
 00275 ; ’1’). At the start of transmission it is taken to logic ’0’
 00276 ; for one bit time to generate the start bit. Next, the 8 bits
 00277 ; of character data are shifted out, LSB first, by rolling them
 00278 ; down into the carry. The program sets or clears the serial
 00279 ; line pin according to whether the carry represents a logic ’0’
 00280 ; or ’1’. Finally the line is held at logic ’1’ for at least one
 00281 ; bit time for the stop bit. The line then rests at this state
 00282 ; (idle) until it is time to send the next byte
 00283 ;
 00284 ; Bit cell timing is done by counting clock cycles: 1 instruction
 00285 ; is 1us, jumps and skips are 2us.
 00286
0002 002B 00287 MOVWF char_buf ; Store the character code (in W)
 00288 ; to character buffer
 00289
0003 0C0A 00290 MOVLW .10 ; Set the number of bits (including
0004 0029 00291 MOVWF count ; start and stop bits) in count
 00292
0005 0403 00293 CLRC ; Clear carry because the start bit
 00294 ; is a ’0’
 00295
0006 00296 bit_loop
0006 0703 00297 IFNC ; serial pin logic ’0’
 00298 if invert_tx
 00299 BCF GPIO,ser_out
 00300 else
0007 0506 00301 BSF GPIO,ser_out
 00302 endif
 00303
0008 0603 00304 IFC ; serial pin logic ’1’
 00305 if invert_tx
 00306 BSF GPIO,ser_out
 00307 else
0009 0406 00308 BCF GPIO,ser_out
 00309 endif
 00310
000A 090F 00311 CALL bit_delay ; Make up the bit time to 833us
 00312
000B 032B 00313 RRF char_buf ; Roll LSB of char_buf into carry,
 00314 ; and the ’1’ from the bit_delay
 00315 ; routine into the MSB
 00316
000C 02E9 00317 DECFSZ count ; Loop until all bits have been
000D 0A06 00318 GOTO bit_loop ; shifted out.
DS00727A-page 14  1999 Microchip Technology Inc.

AN727
MPASM 01.50 Released CARD509.ASM 9-29-1999 14:09:04 PAGE 7
Card Reader

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00319
000E 0800 00320 RETLW 0
 00321
 00322
000F 00323 bit_delay
 00324
 00325 ; The bit length should be 833us in total (=833 Tcy). This
 00326 ; routine and the bit loop routine take 21 Tcy, leaving 812 Tcy
 00327 ; to waste. The delay loop is 4 cycles long, so loop for 203
 00328 ; times. This is done by loading a counter with 255 - 203 = 52
 00329 ; and incrementing it every time around the loop. When the
 00330 ; counter reaches 255 it overflows and sets the carry flag. As
 00331 ; a side effect this routine returns to the bit loop just before
 00332 ; the RRF instruction with carry set, which will roll a ’1’ into
 00333 ; char_buf, which is then used as the stop bit when it rolls out
 00334 ; again after being shifted 8 times.
 00335
000F 0C34 00336 MOVLW .52 ; Initialise temp
0010 002D 00337 MOVWF temp
 00338
0011 0C01 00339 MOVLW .1 ; Put 1 in W for incrementing temp
 00340
0012 0A13 00341 GOTO $+1 ; Waste 2 cycles
0013 0000 00342 NOP ; Waste 1 cycle
 00343
 00344
0014 00345 delay_loop
0014 01ED 00346 ADDWF temp ; Increment temp 1
0015 0703 00347 IFNC ; Did it overflow? 1
0016 0A14 00348 GOTO delay_loop ; No: go round again 2
 00349 ; ---
 00350 ; time = 4 Tcy
 00351
0017 0800 00352 RETLW 0 ; Yes: return
 00353
 00354
 00355 ; **
0018 00356 get_put_char
 00357
 00358 ; This subroutine deals with buffer operations, either storing a
 00359 ; character from char_buf to the buffer or fetching it from the
 00360 ; buffer. The routine uses buf_ptr (the logical buffer address)
 00361 ; to calculate the physical address for the character.
 00362 ;
 00363 ; The 4 bit character will be stored at the current "memory
 00364 ; location" in the buffer. The buffer is a large chunk of RAM
 00365 ; from 0x10 to 0x1F and 0x30 to 0x33. Two "memory locations"
 00366 ; are contained in each byte, one in each nibble.
 00367 ;
 00368 ; The variable buf_ptr points to the next free logical memory
 00369 ; location, and the constants lo_mem and hi_mem record the
 00370 ; physical start and end locations of the RAM block. The
 00371 ; constant buf_sz holds the number of nibbles (or "memory
 1999 Microchip Technology Inc. DS00727A-page 15

AN727
MPASM 01.50 Released CARD509.ASM 9-29-1999 14:09:04 PAGE 8
Card Reader

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00372 ; locations") that can be filled.
 00373 ;
 00374 ; Note there is a discontinuity in the address space, which must
 00375 ; be dealt with when mapping the logical memory location to the
 00376 ; physical memory address
 00377 ;
 00378 ; To calculate the position in memory to store the current
 00379 ; character, divide buf_ptr by 2 and add lo_mem to give the
 00380 ; address in RAM. Next, check if this exceeds the 0x1F address
 00381 ; range by checking bit 5 of the resultant address, and if
 00382 ; necessary force the address into the 0x3n address space by
 00383 ; setting bit 4. Check whether buf_ptr is odd or even by
 00384 ; examining its LSB to see whether to store the character in the
 00385 ; upper or lower nibble.
 00386
 00387 ; When buf_ptr is zero it is pointing at the first "memory
 00388 ; location", which is the low nibble of the first byte.
 00389 ;
 00390 ; All RAM in the memory buffer is cleared at the beginning of
 00391 ; the main loop, so it is not necessary to clear each "memory
 00392 ; location" before storing anything there.
 00393 ;
 00394 ; Note that for a ’put’ operation the character arrives here in
 00395 ; the upper nibble of char_buf, and for a ’get’ operation the
 00396 ; character is returned in the lower nibble.
 00397
0018 0307 00398 RRF buf_ptr,W ; load W with buf_ptr/2. Carry
 00399 ; flag is rolled in.
 00400
0019 0024 00401 MOVWF FSR ; and use the FSR to point to it
 00402 ; Upper bits of FSR are forced
 00403 ; to 1 so junk in Carry flag
 00404 ; doesn’t matter.
 00405
001A 0C10 00406 MOVLW lo_mem ; add the buffer start address
001B 01E4 00407 ADDWF FSR ; to get the physical address to
 00408 ; store the character
 00409
001C 06A4 00410 IFSET FSR,RP0 ; Check for overflow into the
001D 0584 00411 BSF FSR,4 ; second register page and set
 00412 ; bit 4 to move into 0x3n address
 00413 ; space if necessary
 00414
001E 06AA 00415 IFSET flag,read_buf ; check whether this is a read
001F 0A26 00416 GOTO get_char ; or write operation
 00417
0020 00418 put_char
0020 020B 00419 MOVF char_buf,W ; Move the character (in high
 00420 ; nibble) to W
 00421
0021 0707 00422 IFCLR buf_ptr,LSB ; except if LSB of buf_ptr is ’0’
0022 038B 00423 SWAPF char_buf,W ; then the destination is an even
 00424 ; nibble, so swap the character
DS00727A-page 16  1999 Microchip Technology Inc.

AN727
MPASM 01.50 Released CARD509.ASM 9-29-1999 14:09:04 PAGE 9
Card Reader

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00425 ; to the low nibble
 00426
0023 0120 00427 IORWF INDF ; since the buffer was cleared
 00428 ; OR the character into place
 00429
0024 0C29 00430 MOVLW buf_sz + 1 ; set limit for ’put’ operation
 00431 ; to size of buffer
 00432
0025 0A2C 00433 GOTO get_put_done
 00434
0026 00435 get_char
0026 0200 00436 MOVF INDF,W ; Fetch data from buffer to W
 00437
0027 0607 00438 IFSET buf_ptr,LSB ; if LSB of buf_ptr is set the
0028 0380 00439 SWAPF INDF,W ; desired character is an odd
 00440 ; nibble, so swap the nibbles
 00441
0029 0E0F 00442 ANDLW 0x0F ; mask off upper nibble
 00443
002A 002B 00444 MOVWF char_buf ; move it to the character buffer
 00445
002B 0208 00446 MOVF num_chr,W ; set limit for ’get’ operation
 00447 ; to number of characters read
 00448 ; from card
 00449
002C 00450 get_put_done
002C 02A7 00451 INCF buf_ptr ; increment memory pointer.
 00452
002D 0187 00453 XORWF buf_ptr,W ; check if this was the last
 00454 ; nibble in the buffer by
 00455 ; comparing against W (either
 00456 ; buf_sz or num_chr)
 00457
002E 0643 00458 IFZ ; if it was,
002F 058A 00459 BSF flag,buf_end ; then set a flag
 00460
0030 0800 00461 RETLW 0
 00462
 00463
 00464 ; End of subroutines
 00465
 00466
 00467 ; **
 00468 ; Main Program starts here
 00469 ; **
 00470
0031 00471 start
0031 0063 00472 CLRF STATUS
 00473
0032 0CC0 00474 MOVLW B’11000000’ ; Disable GPIO pull-ups and wake
 00475 ; up feature
0033 0002 00476 OPTION
 00477
 1999 Microchip Technology Inc. DS00727A-page 17

AN727
MPASM 01.50 Released CARD509.ASM 9-29-1999 14:09:04 PAGE 10
Card Reader

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

0034 0C0E 00478 MOVLW B’00001110’ ; Set GPIO <1:3> as inputs...
0035 0006 00479 TRIS GPIO ; Note: GP3 is always input
 00480
0036 0066 00481 CLRF GPIO ; GPIO outputs all 0
 00482
 00483 if invert_tx
 00484 BSF GPIO,ser_out ; except for invert_tx condition
 00485 endif
 00486
 00487 ; Clear RAM from 0x07 to 0x0F
 00488 ; for neatness
 00489
0037 0C07 00490 MOVLW 0x07 ; Load start address (0x07) into
0038 0024 00491 MOVWF FSR ; the FSR
 00492
0039 00493 clrloop
0039 0060 00494 CLRF INDF ; Clear the RAM location FSR is
 00495 ; pointing to
 00496
003A 02A4 00497 INCF FSR ; Increment FSR to next location
 00498
003B 0204 00499 MOVF FSR,W ; Check if FSR is pointing past
003C 0FD0 00500 XORLW 0x10 | 0xC0 ; its end point. Remember MSBs
 00501 ; of FSR read ’11’
 00502
003D 0743 00503 IFNZ ; If counter was not 0x10
003E 0A39 00504 GOTO clrloop ; then loop again
 00505
 00506
 00507 ; Main program loop is here
 00508
003F 00509 main_loop
 00510 ; First clear memory buffer in
 00511 ; the same way as above.
 00512
003F 0C10 00513 MOVLW lo_mem ; Fetch buffer start address
0040 0024 00514 MOVWF FSR
 00515
0041 00516 clr_buf_loop
0041 0060 00517 CLRF INDF
 00518
0042 02A4 00519 INCF FSR
 00520
0043 06A4 00521 IFSET FSR,RP0 ; If FSR points to register page 1
0044 0584 00522 BSF FSR,4 ; set bit 4 to move into 0x3n
 00523 ; address space
 00524
0045 0204 00525 MOVF FSR,W ; Check for buffer end address.
0046 0FF4 00526 XORLW (hi_mem + 1) | 0xC0
 00527
0047 0743 00528 IFNZ ; If not end then loop around
0048 0A41 00529 GOTO clr_buf_loop
 00530
DS00727A-page 18  1999 Microchip Technology Inc.

AN727
MPASM 01.50 Released CARD509.ASM 9-29-1999 14:09:04 PAGE 11
Card Reader

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

0049 0067 00531 CLRF buf_ptr ; Initialise buffer pointer to 0
 00532
004A 0C28 00533 MOVLW buf_sz ; Initialise the number of
004B 0028 00534 MOVWF num_chr ; characters read to the maximum
 00535 ; in case of overflow later
 00536
004C 0C58 00537 MOVLW start_code ; Initialise the LRC to the start
004D 002C 00538 MOVWF parityLRC ; sentinel code.
 00539
004E 006A 00540 CLRF flag ; Initialise control flags to
004F 056A 00541 BSF flag,bad_LRC ; zero then set the bad_LRC
 00542 ; flag. Assume the LRC is bad
 00543 ; until the check at the end.
 00544
0050 0C52 00545 MOVLW ’R’ ; Send "Ready" from serial port
0051 0902 00546 CALL send_char
 00547
0052 0C65 00548 MOVLW ’e’
0053 0902 00549 CALL send_char
 00550
0054 0C61 00551 MOVLW ’a’
0055 0902 00552 CALL send_char
 00553
0056 0C64 00554 MOVLW ’d’
0057 0902 00555 CALL send_char
 00556
0058 0C79 00557 MOVLW ’y’
0059 0902 00558 CALL send_char
 00559
 00560
005A 0C0D 00561 MOVLW .13 ; Send CR LF from serial port
005B 0902 00562 CALL send_char
 00563
005C 0C0A 00564 MOVLW .10
005D 0902 00565 CALL send_char
 00566
005E 006B 00567 CLRF char_buf ; Clear character input buffer
 00568
005F 00569 wait_card
005F 0626 00570 IFSET GPIO,card ; Check ^CARD line
0060 0A5F 00571 GOTO wait_card ; if it’s high then keep waiting
 00572
 00573
 00574 ; ^CARD is low, so a card has started passing through the reader
 00575
0061 00576 wt_clk_lo
0061 0646 00577 IFSET GPIO,clock ; Check ^CLK line
0062 0A61 00578 GOTO wt_clk_lo ; If it’s high then keep waiting
 00579
 00580
 00581 ; ^CLK is low, so valid data is on the ^DATA pin. If ^DATA is
 00582 ; low the data bit on the card is a ’1’, so set carry and toggle
 00583 ; the parity bit counter. If ^DATA is high the data bit on the
 1999 Microchip Technology Inc. DS00727A-page 19

AN727
MPASM 01.50 Released CARD509.ASM 9-29-1999 14:09:04 PAGE 12
Card Reader

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00584 ; card is a ’0’, so clear the carry. Roll the carry flag into
 00585 ; the character buffer.
 00586 ;
 00587 ; All this data processing must be done as quickly as possible,
 00588 ; but fortunately the card is being swiped by a human, so from
 00589 ; the micro’s point of view it is all happening very slowly.
 00590
0063 00591 chk_data
0063 0666 00592 IFSET GPIO,signal ; Check ^DATA
0064 0A69 00593 GOTO data_0 ; If it’s high, data bit is ’0’
 00594
0065 00595 data_1
0065 0503 00596 BSF STATUS,C ; Otherwise it’s low so data bit
 00597 ; is ’1’, so set carry flag
 00598
0066 0C80 00599 MOVLW 0x80 ; and toggle parity bit in
0067 01AC 00600 XORWF parityLRC ; parityLRC register
 00601
0068 0703 00602 BTFSS STATUS,C ; Use that fact that carry is
 00603 ; set to skip the next line.
 00604
0069 00605 data_0
0069 0403 00606 BCF STATUS,C ; bit is ’0’, so clear carry
 00607
006A 00608 store_bit
006A 032B 00609 RRF char_buf ; shift data bit in carry flag
 00610 ; into the input buffer, and
 00611 ; shift LSB out into carry flag.
 00612
 00613 ; If the start sentinel code has not yet been seen the LSB will
 00614 ; have been ’0’, so carry will be ’0’. If the start sentinel
 00615 ; code has been seen then there will have been a sentinel bit
 00616 ; set in char_buf which falls out after shifting 5 bits (one
 00617 ; character) in.
 00618
006B 0603 00619 IFC ; So, check the carry flag
006C 0A7C 00620 GOTO got_char
 00621
 00622
 00623 ; Otherwise, here a bit has just been read. Check if the start
 00624 ; sentinel code has ever been seen. If it has then a sentinel
 00625 ; bit will drop out after each character, which is dealt with by
 00626 ; the code above. If not then it is necessary to check for the
 00627 ; start sentinel code after reading each bit.
 00628
006D 060A 00629 IFSET flag,found_start; Has the start code been seen?
006E 0A79 00630 GOTO wt_clk_hi ; Yes, so wait for ^CLK to go
 00631 ; high again and get next bit.
 00632
 00633 ; No, so check for the start
 00634 ; sentinel code now
 00635
006F 0CF8 00636 MOVLW B’11111000’ ; The start code is five bits
DS00727A-page 20  1999 Microchip Technology Inc.

AN727
MPASM 01.50 Released CARD509.ASM 9-29-1999 14:09:04 PAGE 13
Card Reader

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00637 ; long, so mask off the low 3
0070 016B 00638 ANDWF char_buf ; bits in the buffer (which are
 00639 ; probably ’0’ anyway)
0071 0C58 00640 MOVLW start_code ; and compare start_code
0072 018B 00641 XORWF char_buf,W ; to the buffer
 00642
0073 0743 00643 IFNZ ; Is it the start code?
0074 0A79 00644 GOTO wt_clk_hi ; No, so wait for ^CLK to go high
 00645 ; again and get the next bit.
 00646
0075 050A 00647 BSF flag,found_start; Yes, so set a flag
 00648
 00649
 00650 ; Prepare for next character
 00651
0076 00652 next_char
0076 04EC 00653 BCF parityLRC,MSB ; clear the parity flag,
 00654
0077 006B 00655 CLRF char_buf ; clear the input buffer,
 00656
0078 058B 00657 BSF char_buf,4 ; and set a sentinel bit
 00658
 00659
 00660 ; Now wait for the next data bit
 00661
0079 00662 wt_clk_hi
0079 0746 00663 IFCLR GPIO,clock ; Check ^CLK line
007A 0A79 00664 GOTO wt_clk_hi ; Keep waiting whilst it’s low
 00665
007B 0A61 00666 GOTO wt_clk_lo ; Then go and wait for it to be
 00667 ; low again and get another bit
 00668
 00669
007C 00670 got_char
 00671
 00672 ; Jump here when a sentinel bit has dropped out of the input
 00673 ; buffer. There is now a character in the top five bits of
 00674 ; char_buf, the low three bits will be ’0’, and carry will be ’1’
 00675 ; The MSB of char_buf is the parity bit for the character, which
 00676 ; can now be discarded, and bits [6..3] form the character itself:
 00677 ;
 00678 ; char_buf 7 6 5 4 3 2 1 0
 00679 ; P D3 D2 D1 D0 0 0 0
 00680 ;
 00681 ; First, check the parity of the character just read. The
 00682 ; characters on the card are encoded with odd parity, and before
 00683 ; each character is read the parity bit in parityLRC is cleared.
 00684 ; This bit is toggled every time a ’1’ is read for the current
 00685 ; character, which means that if the character was read correctly
 00686 ; this bit will be ’1’.
 00687
 00688
007C 07EC 00689 IFCLR parityLRC,MSB ; If parity bit is ’0’
 1999 Microchip Technology Inc. DS00727A-page 21

AN727
MPASM 01.50 Released CARD509.ASM 9-29-1999 14:09:04 PAGE 14
Card Reader

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

007D 054A 00690 BSF flag,bad_parity ; set the parity error flag
 00691
 00692
 00693 ; Now XOR char_buf with the parityLRC register to update the LRC
 00694 ; state. The LRC portion of the parityLRC register was
 00695 ; initialised with the code for the start sentinel. Every time
 00696 ; a character is read it is XORed with the parityLRC register.
 00697 ; Any bits in the char_buf register which are set will toggle
 00698 ; bits in the LRC portion of parityLRC. If there have been no
 00699 ; bit errors after reading all the characters and the LRC from
 00700 ; the card, then the LRC bits in the parityLRC register will all
 00701 ; be zero.
 00702
007E 020B 00703 MOVF char_buf,W ; Copy char_buf to W
007F 01AC 00704 XORWF parityLRC ; XOR with the parityLRC register
 00705 ; to update the LRC calculation
 00706
 00707 ; If the end sentinel has not
0080 072A 00708 IFCLR flag,found_end ; yet been seen then this is
0081 0A89 00709 GOTO not_LRC ; not the LRC, so store it
 00710
0082 020C 00711 MOVF parityLRC,W ; Otherwise it was the LRC, so
0083 0E78 00712 ANDLW b’01111000’ ; get the LRC check from the
 00713 ; parityLRC register, and mask
 00714 ; off the parity flag
 00715
0084 0643 00716 IFZ ; If it is zero then the LRC was
0085 046A 00717 BCF flag,bad_LRC ; okay so clear the bad_LRC flag
 00718
0086 0207 00719 MOVF buf_ptr,W ; Copy the value of buffer pointer
0087 0028 00720 MOVWF num_chr ; to num_chr
 00721
0088 0A95 00722 GOTO dump_buffer ; and dump it out
 00723
 00724
0089 00725 not_LRC
0089 0CF8 00726 MOVLW end_code ; Is this the end sentinel?
008A 018B 00727 XORWF char_buf,W
 00728
008B 0643 00729 IFZ ; If so, the next character is
008C 052A 00730 BSF flag,found_end ; the LRC, so set a flag
 00731
008D 0643 00732 IFZ
008E 0A76 00733 GOTO next_char ; and don’t bother storing it
 00734
008F 036B 00735 RLF char_buf ; discard parity by shifting it
 00736 ; out, leaving the 4 bit
 00737 ; character in the upper nibble
 00738
0090 0CF0 00739 MOVLW 0xF0 ; mask off the lower nibble
0091 016B 00740 ANDWF char_buf
 00741
0092 0918 00742 CALL get_put_char ; and store the character
DS00727A-page 22  1999 Microchip Technology Inc.

AN727
MPASM 01.50 Released CARD509.ASM 9-29-1999 14:09:04 PAGE 15
Card Reader

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00743
0093 078A 00744 IFCLR flag,buf_end ; Is the buffer full?
0094 0A76 00745 GOTO next_char ; no, so get the next character
 00746
 00747 ; Otherwise, fall through...
 00748
 00749 ; Jump to dump_buffer when the buffer is full. This routine
 00750 ; loops through each "location" in the memory buffer, and sends
 00751 ; the character at that location out serially on an output pin.
 00752
0095 00753 dump_buffer
0095 0067 00754 CLRF buf_ptr ; Load buffer pointer with 0
 00755
0096 05AA 00756 BSF flag,read_buf ; Set the flag to read mode
0097 048A 00757 BCF flag,buf_end ; Clear the buf_end flag
 00758
0098 00759 loop_buffer
0098 0918 00760 CALL get_put_char ; Get character from buffer
 00761
0099 0C30 00762 MOVLW .48 ; convert to ASCII by adding 48
009A 01CB 00763 ADDWF char_buf, W ; and put the result in W
 00764
009B 0902 00765 CALL send_char ; and send the character
 00766
009C 078A 00767 IFCLR flag,buf_end ; have we emptied the buffer?
009D 0A98 00768 GOTO loop_buffer ; No, so loop around
 00769
 00770 ; After sending the contents of the buffer, two more characters
 00771 ; are sent to indicate any errors. If there was bad parity on
 00772 ; any character a "P" is sent, and if there was a bad LRC an "L"
 00773 ; is sent. If either condition was okay we send a period "."
 00774
009E 0C2E 00775 MOVLW ’.’ ; Load ASCII "." into W
 00776
009F 064A 00777 IFSET flag,bad_parity ; If parity was ever bad
00A0 0C50 00778 MOVLW ’P’ ; load ASCII "P" into W instead
 00779
00A1 0902 00780 CALL send_char ; then send the character
 00781
00A2 0C2E 00782 MOVLW ’.’ ; Load ASCII "." into W again
 00783
00A3 066A 00784 IFSET flag,bad_LRC ; If LRC was bad
00A4 0C4C 00785 MOVLW ’L’ ; load ASCII ’L’ into W instead
 00786
00A5 0902 00787 CALL send_char ; and send the character
 00788
00A6 0C0D 00789 MOVLW .13 ; Send CR LF from serial port
00A7 0902 00790 CALL send_char
 00791
00A8 0C0A 00792 MOVLW .10
00A9 0902 00793 CALL send_char
 00794
00AA 0A3F 00795 GOTO main_loop ; Back to the beginning and wait
 1999 Microchip Technology Inc. DS00727A-page 23

AN727

MPASM 01.50 Released CARD509.ASM 9-29-1999 14:09:04 PAGE 16
Card Reader

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00796 ; for another card.
 00797
 00798 ; The end is nigh...
 00799
 00800 END

SYMBOL TABLE
 LABEL VALUE

C 00000000
DC 00000001
FSR 00000004
GP0 00000000
GP1 00000001
GP2 00000002
GP3 00000003
GP4 00000004
GP5 00000005
GPIO 00000006
GPWUF 00000007
IFC SKPNC
IFCLR BTFSS
IFNC SKPC
IFNZ SKPZ
IFSET BTFSC
IFZ SKPNZ
INDF 00000000
LSB 00000000
MSB 00000007
OSCCAL 00000005
PA0 00000005
PC 00000002
PD 00000003
RP0 00000005
SKPCLR BTFSC
SKPSET BTFSS
STATUS 00000003
TMR0 00000001
TO 00000004
Z 00000002
__12C509 00000001
bad_LRC 00000003
bad_parity 00000002
bit_delay 0000000F
bit_loop 00000006
buf_end 00000004
buf_ptr 00000007
buf_sz 00000028
card 00000001
char_buf 0000000B
chk_data 00000063
clock 00000002
clr_buf_loop 00000041
clrloop 00000039
count 00000009
data_0 00000069
data_1 00000065
delay_loop 00000014
dump_buffer 00000095
end_code 000000F8
flag 0000000A
found_end 00000001
DS00727A-page 24  1999 Microchip Technology Inc.

AN727
MPASM 01.50 Released CARD509.ASM 9-29-1999 14:09:04 PAGE 18
Card Reader

SYMBOL TABLE
 LABEL VALUE

found_start 00000000
get_char 00000026
get_put_char 00000018
get_put_done 0000002C
got_char 0000007C
hi_mem 00000033
invert_tx 00000000
lo_mem 00000010
loop_buffer 00000098
main_loop 0000003F
next_char 00000076
not_LRC 00000089
num_chr 00000008
parityLRC 0000000C
put_char 00000020
read_buf 00000005
send_char 00000002
ser_out 00000000
signal 00000003
start 00000031
start_code 00000058
store_bit 0000006A
temp 0000000D
wait_card 0000005F
wt_clk_hi 00000079
wt_clk_lo 00000061

MEMORY USAGE MAP (’X’ = Used, ’-’ = Unused)

0000 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0040 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0080 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXX----- ----------------

All other memory blocks unused.

Program Memory Words Used: 171
Program Memory Words Free: 853

Errors : 0
Warnings : 0 reported, 0 suppressed
Messages : 0 reported, 14 suppressed
 1999 Microchip Technology Inc. DS00727A-page 25

 2002 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab,
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,
PICSTART, PRO MATE, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip Tech-
nology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode
and Total Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

 2002 Microchip Technology Inc.

M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086
Hong Kong
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02

WORLDWIDE SALES AND SERVICE

	Introduction
	Data Encoding
	Card Data Format
	Track 1 - IATA
	Track 2 - ABA
	Track 3 - THRIFT

	Error Detection
	Character set
	Data Decoding

	Circuit Layout
	Conclusion
	WORLDWIDE SALES AND SERVICE

