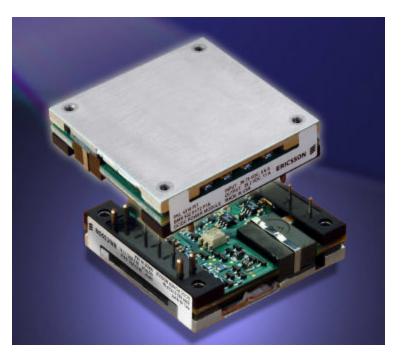
Advanced Specification 50A - 60A DC/DC Power Module 48V Input, 3.3V Output

- High Efficiency, 92% Typ
- High Power Density, 68 W/in<sup>3</sup> (3.3V @ 60A)
- Fast Dynamic Response, 200 ms, ±250 mVpeak Typ.
- Low Output Ripple, 70mVp-p Typ.
- Wide input voltage range (36-75V)
- 1,500 Vdc isolation voltage
- Max. case temperature +100°C
- UL 1950/UL<sub>C</sub> 1950 Recognized
- TUV to EN 60950 Type Approved
- Demonstrated compliance with isolation requirements equivalent to Basic Insulation per UL 60950
- Patent Pending Paralleling Feature
- Heatsinks available as an option for extended operation




The PKL 4000 series represents another one of Ericsson's "industry first" achievements in the continuing development of our "Third Generation" of high-density, high-efficiency power modules. The PKL 4110A PI module packs 68W/in<sup>3</sup> at 92% efficiency (3.3V @ 60A) in an half-brick footprint that has been enhanced to include two additional output pins for motherboard connection reliability at this high power.

These breakthrough features come from using the most advanced patented topology utilizing integrated magnetics and synchronous rectification on a low-resistivity multilayer PCB.

This product features fast dynamic response times and low output ripple, which are important parameters when supplying low-voltage logics.





The PKL 4000 PI Series also is especially well suited for limited board space and high dynamic load applications.

Ericsson's PKL 4000 Series Power Modules address the converging "New Telecom" market, by specifying the input voltage range in accor-dance with ETSI specifications. The PKL 4000 Series also offers overvoltage protection, under-voltage protection, overtemperature protection, soft-start, paralleling, and short circuit protection.

These modules are manufactured on highly automated manufacturing lines. Ericsson's worldclass quality commitment is reflected in our standard five year warranty. Ericsson Inc., Microelectronics has been an ISO 9001 certified Suplier since 1991.

For a complete product program, please reference the back page.

## General

## Connections

| Pin   | Designation      | Function                                                    |
|-------|------------------|-------------------------------------------------------------|
| 1     | -INPUT           | Negative input                                              |
| 2     | CASE             | Connected to base plate                                     |
| 3     | REMOTE<br>ON/OFF | Remote control (primary) to turn-on and turn-off the output |
| 4     | +INPUT           | Positive input.                                             |
| 5, 10 | -OUTPUT          | Negative output (two pins)                                  |
| 6     | -SENSE           | Negative remote sense                                       |
| 7     | TRIM             | Output voltage adjust                                       |
| 8     | +SENSE           | Positive remote sense                                       |
| 9, 11 | +OUTPUT          | Positive output (two pins)                                  |

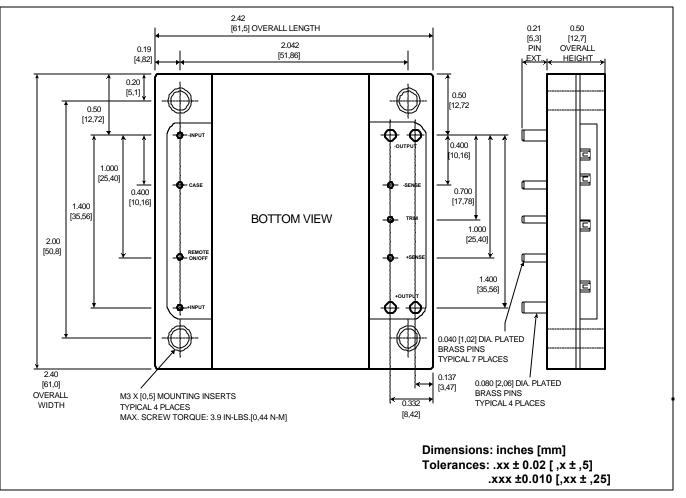
Note: If the remote sense is not needed the "-Sense" should be connected to "-Out" and the "+Sense" should be connected to "+Out."

### Weight

### 110 grams

## Case

Aluminum base plate with metal standoffs.


### Pins

Pin Material: Brass Pin Plating: Tin/Lead over Nickel

## **Mechanical Data**

## Input $T_C < T_{Cmax}$ unless otherwise specified

| Characteristics |                           | Conditions                                  | min                                        | typ | max        | Units           |
|-----------------|---------------------------|---------------------------------------------|--------------------------------------------|-----|------------|-----------------|
| VI              | Input voltage<br>range    |                                             | 36                                         |     | 75         | V <sub>dc</sub> |
| Vloff           | Turn-off input<br>voltage | Ramping from higher voltage                 | 31                                         | 33  |            | V <sub>dc</sub> |
| Vlon            | Turn-on input<br>voltage  | Ramping from lower voltage                  |                                            | 34  | 36         | V <sub>dc</sub> |
| lı max          | Max. Input<br>Current     | $V_i = V_i min = 36 V$                      | PKL 41 <sup>-</sup><br>PKL 41 <sup>-</sup> |     | 6.5<br>5.5 | A <sub>dc</sub> |
| lı rush         | Inrush Current            | Except Charging of G                        |                                            |     | 1          | A <sub>dc</sub> |
| Cı              | Input capacitance         |                                             |                                            | 3.5 |            | μF              |
| Pli             | Input idling<br>power     | I <sub>O</sub> =0, T <sub>C</sub> =-30+95°C |                                            | 6   |            | w               |
| P <sub>RC</sub> | Input stand-by<br>power   | T <sub>C</sub> =−30…+95 °C,<br>RC Open      |                                            | 0.4 | 0.6        | W               |



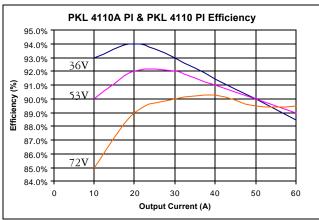
# PKL 4110A PI / PKL 4110 PI

## $T_C = -40...+100^{\circ}C$ , $V_I = 36...75V$ unless otherwise specified.

## Output

| Characteristics                                                                          |                                             | Conditions                                                      | Device                      | Output       |              |              | Unit  |
|------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------|-----------------------------|--------------|--------------|--------------|-------|
|                                                                                          |                                             | Conditions                                                      |                             | min          | typ          | max          | Unit  |
| Voi                                                                                      | Output voltage initial setting and accuracy | $T_{C} = +25 ^{\circ}C, V_{I} = 53 V, b = I_{Omax}$             | All                         | 3.25         | 3.3          | 3.35         | V     |
| VOI                                                                                      | Output adjust range                         | I <sub>O</sub> =I <sub>Omax</sub>                               | All                         | 2.64         |              | 3.63         | V     |
| Vo                                                                                       | Output voltage<br>tolerance band            | ID=0 to Pumax                                                   | All                         | 3.2          |              | 3.4          | V     |
|                                                                                          | Line regulation                             | I <sub>O</sub> =I <sub>O</sub> max                              | All                         |              | 5            | 15           | mV    |
|                                                                                          | Load regulation                             | $V_l = 53V$ , $I_O = 0$ to $I_O max$ ,                          | All                         |              | 5            | 15           | mV    |
| Vt r Load transient Load step = 0.25 x I <sub>Omax</sub> voltage deviation di/dt = 1A/us |                                             |                                                                 | All                         |              | +/-250       |              | mV    |
| t <sub>t r</sub>                                                                         | Load transient recovery time                |                                                                 | All                         |              | 200          |              | μs    |
| ts                                                                                       | Start-up time                               | From V connection to V_0= 0.9 $\times$ V_0nom                   | All                         |              | 10           | 15           | ms    |
| lo                                                                                       | Output current                              |                                                                 | PKJ 4110A PI<br>PKJ 4110 PI | 0<br>0       |              | 60<br>50     | A     |
| P <sub>Omax</sub> Max output power                                                       |                                             | At V <sub>O</sub> = V <sub>Onom</sub>                           | PKJ 4110A PI<br>PKJ 4110 PI |              |              | 198<br>165   | w     |
| l <sub>lim</sub>                                                                         | Current limit threshold                     | V <sub>O</sub> = 0.96 V <sub>Onom</sub> @ T <sub>C</sub> <100°C | PKJ 4110A PI<br>PKJ 4110 PI | 61.0<br>51.0 | 64.8<br>54.5 | 72.0<br>62.0 | А     |
| I <sub>sc</sub>                                                                          | Short circuit current                       |                                                                 | PKJ 4110A PI<br>PKJ 4110 PI |              | 65<br>55     | 74<br>64     | A     |
| Voac                                                                                     | Output ripple & noise                       | lO=lOmax, f < 20 MHz                                            | All                         |              | 70           | 150          | mVp-p |
| SVR                                                                                      | Supply voltage<br>rejection (ac)            | f < 1kHz                                                        | All                         | -50          |              |              | dB    |
| OVP Over voltage protection                                                              |                                             | V <sub>I</sub> = 53V,                                           | All                         | 3.9          | 4.4          | 5.0          | V     |

### Miscellaneous


| Characteristics |                     | Conditions                                                        | Device                      | min typ max  | Unit |
|-----------------|---------------------|-------------------------------------------------------------------|-----------------------------|--------------|------|
| η               | Efficiency          | $I_{o} = I_{omax}, V_{I} = 53V, T_{c} = +25^{\circ}C$             | All                         | 92           | %    |
| P <sub>d</sub>  | Power dissapation.  | $I_{_{O}} = I_{_{Omax}}, V_{_{I}} = 53V, T_{_{C}} = +25^{\circ}C$ | PKJ 4110A PI<br>PKJ 4110 PI | 17.2<br>14.3 | w    |
| f <sub>s</sub>  | Switching frequency | $I_{o} = 01.0 \times I_{omax}$                                    | All                         | 150          | kHz  |

### **Absolute Maximum Ratings**

| Chara            | acteristics                                         | min   | max  | Unit             |
|------------------|-----------------------------------------------------|-------|------|------------------|
| Tc               | Maximum Operating Case Temperature                  | -40   | +100 | °C               |
| Ts               | Storage temperature                                 |       | +125 | °C               |
| VI               | Input voltage: Continuous                           | - 0.5 | +80  | V dc             |
|                  | Transient (100ms)                                   |       | +100 | V dc             |
| Viso             | Isolation voltage<br>(input to output test voltage) | 1,500 |      | V dc             |
| V <sub>RC</sub>  | Remote control voltage                              |       | 12   | Vdc              |
| l <sup>2</sup> t | Inrush transient                                    |       | 1    | A <sup>2</sup> s |

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as "no destruction limits," are normally tested with one parameter at a time exceeding the limits of output data or electrical characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

## **Typical Characteristics**



### **Product Program**

| Vı     | V <sub>o</sub> /I <sub>o</sub> | P <sub>o</sub> max | Ordering Number |
|--------|--------------------------------|--------------------|-----------------|
| 48/60V | 3.3V/60A                       | 198W               | PKL 4110A PI    |
| 48/60V | 3.3V/50A                       | 165W               | PKL 4110 PI     |

The PKL 4000 DC/DC power modules will be available with the different options listed in the Product Options Table

Please check with the factory for availability.

## **Product Options**

| Option                                                 | Suffix | Example        |
|--------------------------------------------------------|--------|----------------|
| Negative remote on/off<br>logic                        | -      | PKL 4110A PI   |
| Industry Standard Trim<br>(i.e. V <sub>o</sub> Adjust) | Т      | PKL 4110A PIT  |
| Positive remote on/off logic                           | Р      | PKL 4110A PIP  |
| Lead length 0.145" ± 0.010"                            | LA     | PKL 4110A PILA |

Information given in this Advanced Specification is believed to be accurate and reliable. No responsibility is assumed for the consequences of its use for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Ericsson Microelectronics. These products are sold only according to Ericsson Microelectronics' general conditions of sale, unless otherwise confirmed in writing. Specifications are subject to change without notice.

Ericsson Inc. Microelectronics 1700 International Pkwy. Richardson, Texas 75081 Phone: 877-ERICMIC www.ericsson.com/microelectronics The latest and most complete information can be found on our website!

Advanced Specification

EN/LZT 108 5167 R1 © Ericsson Inc., Microelectronics, December, 2001