Advanced Specification 75-150W DC/DC Power Modules 48 V Input; 12V @ 6.3-12.5A Output

- High Efficiency 93% Typ at full load
- Fast Dynamic Response, 100us,
 +/- 150 mVpeak Typ
- Heatsinks available as an option for extended operation
- MTBF > 3 million hours in accordance with Bellcore TR-332
- High power density, up to 55 W/in3
- Wide input voltage range (34-75V) according to ETSI Specifications
- Industry standard footprint & pin-out
- 1,500 Vdc isolation voltage
- Max case temperature +100°C
- UL 1950/UL_c 1950 Recognized
- Demonstrated compliance with isolation requirements equivalent to Basic Insulation per UL 60950
- TUV to EN60 950 Type Approved

The PKJ series represents a "third generation" of High Density DC/DC Power Modules providing greater than 90% efficiency. Ericsson uses proprietary drive and control circuits with planar magnetics and low resistivity multilayer PCB technology, and advanced patented topology with active synchronous rectification in an industry standard half brick package with unparalleled performance.

The product features fast dynamic response times and low output ripple, which are important parameters when supplying high quality DC power to low voltage logics and Wireless applications. The PKJ converter's excellent high efficiency and advanced design are well suited for limited board space and high dynamic load applications.

Ericsson's PKJ Power Modules address the converging "New Telecoms" market by specifying the input voltage range in accordance with ETSI specifications. The PKJ series also offers the flexibility of using an optional heatsink when needed, enabling reduced airflow, extended reliability or higher ambient temperature operation. Included in the PKJ series are over-voltage protection, under voltage protection, over temperature protection, soft-start, and short circuit protection.

These modules are manufactured using highly automated manufacturing lines with a world-class quality commitment which is reflected in our standard five year warranty. Ericsson Inc., Microelectronics has been an ISO 9001 certified supplier since 1991.

General

Connections

Pin	Designation	Function
1	- IN	Negative Input
2	CASE	Connected to baseplate
3	RC	Remote Control to turn on and off
		the output
4	+ IN	Positive Input
5	- OUT	Negative Output
6	- SEN	Negative Remote Sense
7	TRIM	Output Voltage Adjust
8	+ SEN	Positive Remote Sense
9	+ OUT	Positive Output

Weight

Maximum 85 g

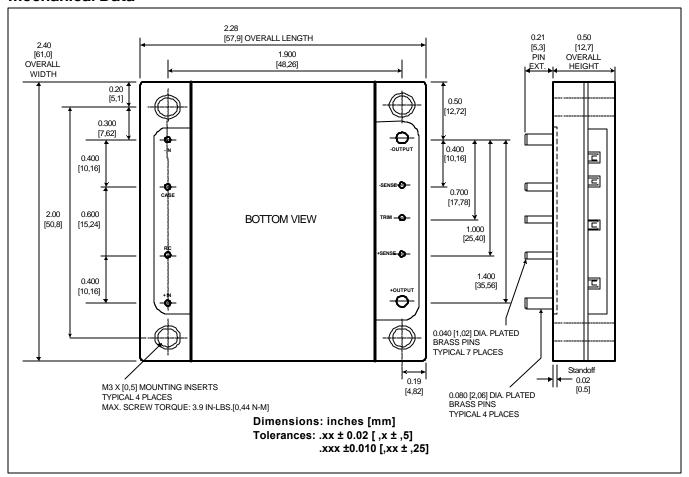
Case

Aluminum baseplate with metal standoffs.

Pins

Pin material: Brass

Pin plating: Tin/Lead over Nickel.


Input $T_C < T_{C max}$

Characteristics		Conditions	min	typ	max	Unit
Vı	Input voltage range ¹⁾		34		75	Vdc
V _{loff}	Turn-off input voltage	Ramping from higher voltage	31	33		Vdc
V _{Ion}	Turn-on input voltage	Ramping from lower voltage		34	36	Vdc
Сі	Input capacitance			2.8		μF
I _{lac}	Reflected ripple current	5 Hz to 20 MHz		20		mA _{p-p}
I _{I max}	Maximum input current	V _I = 36V PKJ 4113A PIT PKJ 4113 PIT PKJ 4713 PIT			4.93 3.27 2.46	A A A
Pli	Input idling power	I _O =0, V _I = 53 V		2.5	7.5	W
P _{RC}	Input stand-by power (turned off with RC)	V _I =53V, RC open		0.05	2.5	W
Trim	Maximum input voltage on trim pin				6.0	Vdc

Note

1) The input voltage range 34...75 V meets the requirements in the European Telecom Standard prETS 300 132-2 for Normal input voltage range in 48 V and 60 V DC power systems, -40.5...-57.0 V and -50.0...-72.0 V respectively.

Mechanical Data

PKJ 4113A PIT/PKJ 4113 PIT/PKJ 4713 PIT

 $T_C = -40...+100$ °C, $V_I = 36...75V$ unless otherwise specified.

Output

Characteristics		Conditions	Device	Output			1124
		Conditions	Device	min	typ	max	Unit
Voi	Output voltage initial setting and accuracy	T _C =+25 °C, V _I = 53 V, V _I =I _{Omax}	All	11.8	12.0	12.2	V
VOI	Output adjust range	I _O =I _{Omax}	All	9.6		13.3	V
V ₀	Output voltage tolerance band	I _O =0 to I _O max	All	11.64		12.36	V
	Line regulation	I _O =I _O max	All		3	10	mV
	Load regulation	$V_1 = 53V$, $I_0=0$ to I_{Omax} ,	All		3	10	mV
Vtr	Load transient voltage deviation	Load step = 0.25 x l _{Omax} di/dt = 1A/us	All		+/-100		mV
t _{t r}	Load transient recovery time		All		150		μs
ts	Start-up time	From V ₁ connection to $V_0 = 0.9 \times V_{Onom}$	All		30	50	ms
lo	Output current		PKJ 4113A PIT PKJ 4113 PIT PKJ 4713 PIT	0 0 0		12.5 8.3 6.25	А
P _{Omax}	Max output power	At V _O = V _{Onom}	PKJ 4113A PIT PKJ 4113 PIT PKJ 4713 PIT			150 100 75	W
l _{lim}	Current limit threshold	V _O = 0.96 V _{Onom} @ T _C <100°C	PKJ 4113A PIT PKJ 4113 PIT PKJ 4713 PIT	13.5 9.0 7.0	14.5 10.5 8.0	16.0 12.0 9.0	А
I _{sc}	Short circuit current		PKJ 4113A PIT PKJ 4113 PIT PKJ 4713 PIT		16.5 12.0 10.0	18.0 14.0 12.0	W
Voac	Output ripple & noise	I _O =I _O max, f < 20 MHz	All		75	100	mV _{p-p}
SVR	Supply voltage rejection (ac)	f < 1kHz	All	-53			dB
OVP	Over voltage protection	V _I = 53V,	Al		14.9	15.5	V

Miscellaneous


Characteristics		Conditions	Device	min typ max	Unit
η	Efficiency	$I_0 = I_{0max}, V_1 = 53V, T_C = +25^{\circ}C$	All	93	%
P _d	Power dissapation.	$I_{o} = I_{omax}, V_{i} = 53V, T_{c} = +25^{\circ}C$	PKJ 4113A PIT PKJ 4113 PIT PKJ 4713 PIT	11.3 7.5 5.6	W
f _s	Switching frequency	I _o = 01.0 x I _{Omax}	All	300	kHz

Absolute Maximum Ratings

Characteristics		min	max	Unit
Tc	Maximum Operating Case Temperature		+100	°C
Ts	Storage temperature	-40	+125	°C
VI	Input voltage: Continuous	- 0.5	+80	V dc
	Transient (100ms)		+100	V dc
V _{ISO}	Isolation voltage (input to output test voltage)	1,500		V dc
V _{RC}	Remote control voltage		15	Vdc
l²t	Inrush transient		1	A ² s

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as "no destruction limits," are normally tested with one parameter at a time exceeding the limits of output data or electrical characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Typical Characteristics

Product Program

V _I	V _O /I _O max	P _o max	Ordering No.
48/60 V	12V/12.5A	150 W	PKJ 4113A PIT
	12V/8.3A	100 W	PKM 4113 PIT
	12V/6.25A	75 W	PKM 4713 PIT

The PKJ 4113A PIT, PKJ 4113 PIT, and PKJ 4713 PIT DC/DC power modules are available with the different options listed in the Product Options Table.

Please check with the factory for availability.

Product Options

Option	Suffix	Example
Negative remote on/off logic, Industry Standard trim (i.e. V _o Adjust)	-	PKJ 4113 PIT
Positive remote on/off logic	Р	PKJ 4113 PIPT
Lead length 0.145"± 0.010"	LA	PKJ 4113 PITLA

Information given in this Advanced Specification is believed to be accurate and reliable. No responsibility is assumed for the consequences of its use for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Ericsson Microelectronics. These products are sold only according to Ericsson Microelectronics' general conditions of sale, unless otherwise confirmed in writing. Specifications are subject to change without notice.

Ericsson Inc., Microelectronics 1700 International Pkwy., Suite 200 Richardson, Texas 75081 Phone: 877-ERICMIC www.ericsson.com/microelectronics

For sales contacts, please refer to our website or call: 877-374-2642 or fax: 972-583-8355

The latest and most complete information can be found on our website!

Advanced Specification

AE/LZT 108 3486 R2 © Ericsson Inc., Microelectronics, December 2001