

OCMOS FET™

PS7342C-1A,PS7342CL-1A

CURRENT LIMIT TYPE 6-PIN DIP OCMOS FET (1-ch OCMOS FET)

DESCRIPTION

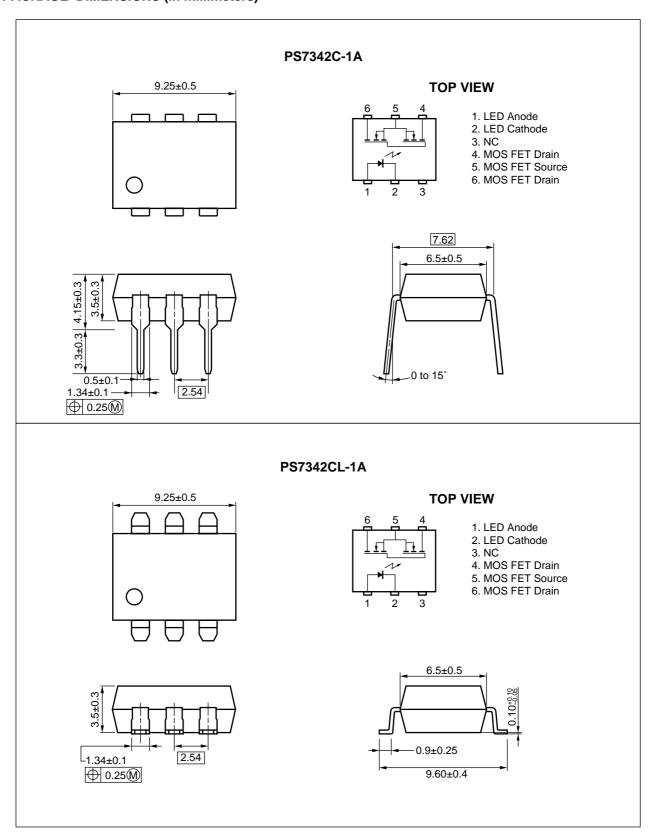
The PS7342C-1A and PS7342CL-1A are solid state relays containing a GaAs LED on the light emitting side (input side) and MOS FETs and current control circuit on the output side.

They are suitable for analog signal control because of their low offset and high linearity.

The PS7342CL-1A has a surface mount type lead.

FEATURES

- Limit current (ILMT = 175 to 370 mA)
- High isolation voltage (BV = 3 750 Vr.m.s.)
- 1 channel type (1 a output)
- · Designed for AC/DC switching line changer
- Small package (6-pin DIP)
- Low offset voltage
- PS7342CL-1A: Surface mount type


APPLICATIONS

- · Exchange equipment
- · Measurement equipment
- FA/OA equipment

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

★ PACKAGE DIMENSIONS (in millimeters)

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, unless otherwise specified)

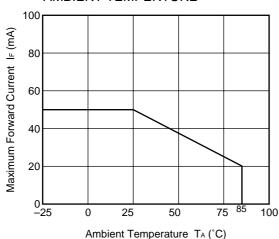
Parameter		Symbol	Ratings	Unit	
Diode	Forward Current (DC)	lF	50	mA	
	Reverse Voltage	VR	5.0	V	
	Power Dissipation	Po	50	mW	
	Peak Forward Current [™]	I FP	1	Α	
MOS FET	Break Down Voltage	VL	400	V	
	Continuous Load Current	IL	170	mA	
	Power Dissipation	Po	560	mW	
Isolation Voltage*2		BV	3 750	Vr.m.s.	
Total Power Dissipation		Рт	610	mW	
Operating Ambient Temperature		TA	-40 to +85	°C	
Storage Temperature		T _{stg}	-40 to +125	°C	

^{*1} PW = 100 μ s, Duty Cycle = 1 %

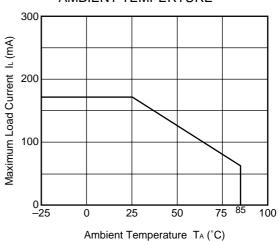
RECOMMENDED OPERATING CONDITIONS (TA = 25 °C)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	
LED Operating Current	lF	2	10	20	mA	
LED Off Voltage	VF	0		0.5	V	

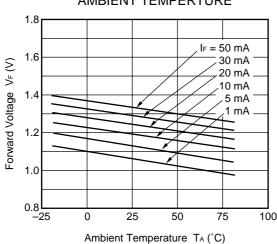
ELECTRICAL CHARACTERISTICS (TA = 25 °C)

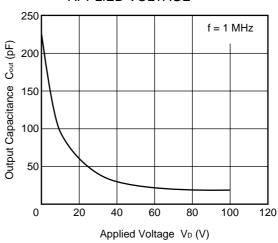

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Diode	Forward Voltage	VF	IF = 10 mA		1.2	1.4	V
	Reverse Current	lR	V _R = 5 V			5.0	μΑ
MOS FET	Off-state Leakage Current	Loff	Vp = 400 V		0.001	1.0	μΑ
	Output Capacitance	Cout	V _D = 0 V, f = 1 MHz		237		pF
Coupled	On-state Resistance	Ron1	IF = 10 mA, IL = 10 mA		12	20	Ω
		Ron2	IF = 10 mA, IL = 170 mA		12	20	
	Turn-on Time	ton	IF = 10 mA, $V_L = 5 V$, $R_L = 500 \Omega$,		2.0	5.0	ms
	Turn-off Time	toff	PW ≥ 10 ms		0.06	1.0	
	Isolation Resistance	R _{I-O}	Vi-o = 1.0 kVpc	10°			Ω
	Isolation Capacitance	Сі-о	V = 0 V, f = 1 MHz		1.1		pF
	Limit Current [™]	Іьмт	$I_F = 10 \text{ mA}, t = 5 \text{ ms}, V_L = 6 \text{ V}$	175	270	370	mA

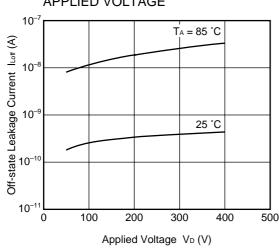
*1 N rank: 175 to 370 mA M rank: 175 to 250 mA L rank: 230 to 370 mA

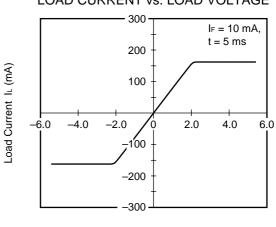

^{*2} AC voltage for 1 minute at $T_A = 25$ °C, RH = 60 % between input and output

TYPICAL CHARACTERISTICS (TA = 25 °C, unless otherwise specified)

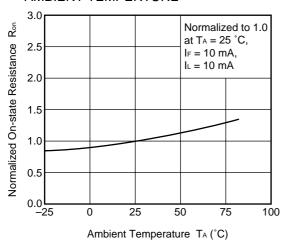



MAXIMUM LOAD CURRENT vs. AMBIENT TEMPERTURE

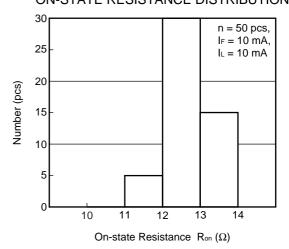

FORWARD VOLTAGE vs. AMBIENT TEMPERTURE


OUTPUT CAPACITANCE vs. APPLIED VOLTAGE

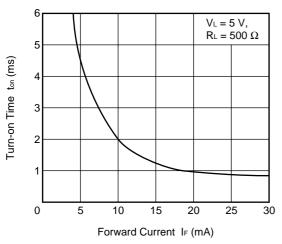
OFF-STATE LEAKAGE CURRENT vs. APPLIED VOLTAGE

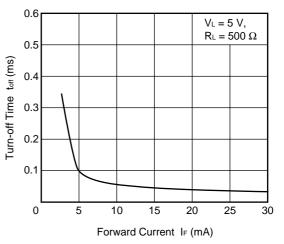


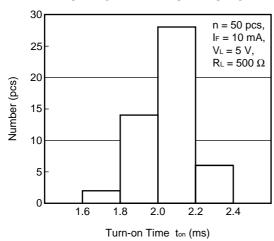
LOAD CURRENT vs. LOAD VOLTAGE

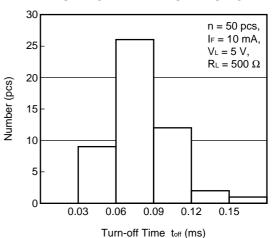


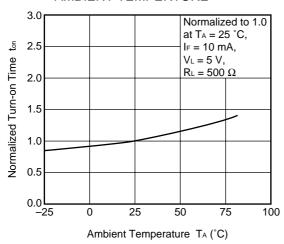
Load Voltage V_L (V)

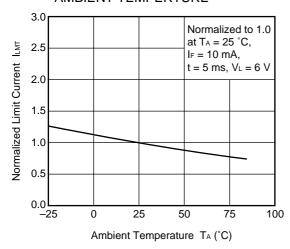

NORMALIZED ON-STATE RESISTANCE vs. AMBIENT TEMPERTURE


ON-STATE RESISTANCE DISTRIBUTION

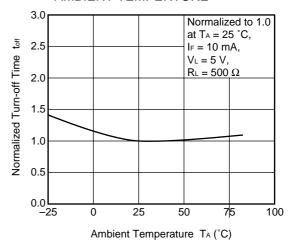

TURN-ON TIME vs. FORWARD CURRENT


TURN-OFF TIME vs. FORWARD CURRENT

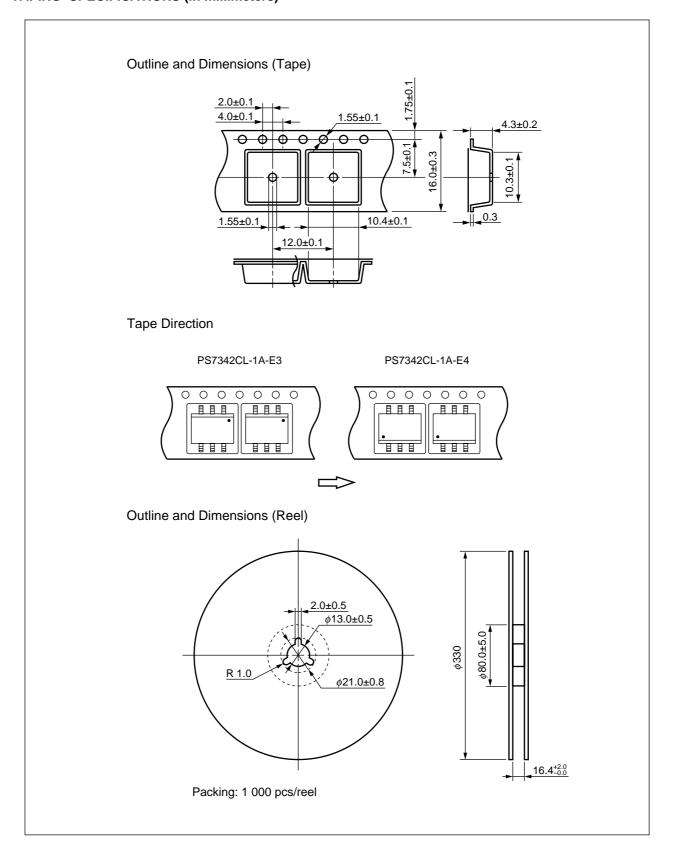

TURN-ON TIME DISTRIBUTION


TURN-OFF TIME DISTRIBUTION

NORMALIZED TURN-ON TIME vs. AMBIENT TEMPERTURE



NORMALIZED LIMIT CURRENT vs. AMBIENT TEMPERTURE



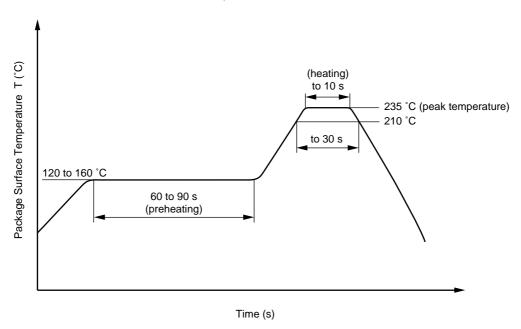
Remark The graphs indicate nominal characteristics.

NORMALIZED TURN-OFF TIME vs. AMBIENT TEMPERTURE

TAPING SPECIFICATIONS (in millimeters)

★ RECOMMENDED SOLDERING CONDITIONS

(1) Infrared reflow soldering


• Peak reflow temperature 235 °C (package surface temperature)

• Time of temperature higher than 210 °C 30 seconds or less

• Number of reflows One

• Flux Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt % is recommended.)

Recommended Temperature Profile of Infrared Reflow

(2) Dip soldering

• Temperature 260 °C or below (molten solder temperature)

• Time 10 seconds or less

• Number of times One

• Flux Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of

0.2 Wt % is recommended.)

(3) Cautions

Fluxes

Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

· Products in dry pack

After opening the dry pack, solder the products within the valid storage period specified on the label on the dry pack.

[MEMO]

[MEMO]

[MEMO]

CAUTION

Within this device there exists GaAs (Gallium Arsenide) material which is a harmful substance if ingested. Please do not under any circumstances break the hermetic seal.

OCMOS FET is a trademark of NEC Corporation.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.