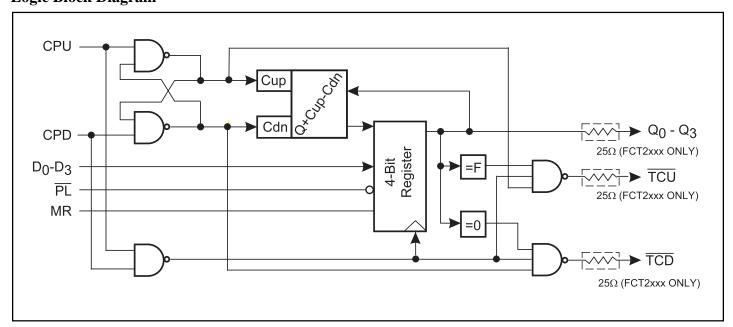
PI74FCT193T (25Ω Series) PI74FCT2193T

High-Speed CMOS Presettable Synchronous 4-Bit Binary Counters

Product Features

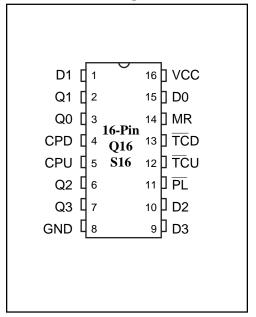

- PI74FCT193/2193T is pin compatible with bipolar FASTTM Series at a higher speed and lower power consumption
- 25Ω series resistor on all outputs (FCT2XXX only)
- TTL input and output levels
- Low ground bounce outputs (25 Ω series only)
- Extremely low static power
- Hysteresis on all inputs
- Industrial operating temperature range: -40°C to +85°C
- · Packages available:
 - 16-pin 150 mil wide plastic QSOP(Q)
 - 16-pin 300 mil wide plastic SOIC(S)

Product Description

Pericom Semiconductor's PI74FCT series of logic circuits are produced using the Company's advanced 0.6 micron CMOS technology, achieving industry leading speed grades. All PI74FCT2XXX devices have a built-in 25 ohm series resistor on all outputs to reduce noise due to reflections, thus eliminating the need for an external terminating resistor.

The PI74FCT193 is a high-speed CMOS 4-bit binary up/down counter. It has a single clock with clock enable and up/down control inputs and ripple carry output. The 193 has asynchronous preload inputs which override the count inputs. All inputs have clamp diodes for undershoot noise suppression. All outputs have ground bounce suppression.

Logic Block Diagram



1

PS2085E 09/14/99

Product Pin Configurations

Product Pin Description

Pin Name	Description
PL	Asynchronous Preload (Active Low)
MR	Asynchronous Master Reset (Active High)
CPU	Count Up Clock (Rising Edge)
CPD	Count Down Clock (Rising Edge)
Dn	Data Outputs
Qn	Data Outputs
TCU	Terminal Count Up (Carry) Output (Active Low)
TCD	Terminal Count Down (Borrow) Output (Active Low)

Truth Table⁽¹⁾

Inputs					Out	Emakina		
PL	MR	CPU	CPD	DI	Q3-Q0	TCU	TCD	Function
X	Н	X	L	X	0000	X	L	Reset
X	Н	X	Н	X	0000	X	Н	Reset
L	L	X	X	D3-D0	D3-D0	X	X	Load Data
Н	L	1	Н	X	Q+1	X	X	Count Up
Н	L	Н	1	X	Q-1	X	X	Count Down
Н	L	L	Н	X	F	L	Н	Count Up = 1111
Н	L	Н	Н	X	0-Е	Н	Н	Count Up ≠ 1111
Н	L	Н	L	X	0	Н	L	Count Down = 0000
Н	L	Н	Н	X	1-F	Н	Н	Count Down ≠ 0000

Notes:

1. H = High Voltage Level

L = Low Voltage Level

X = Irrelevant

↑ = Clock Transition, Low-to-High

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature -65°C to $+150$	°C
Ambient Temperature with Power Applied40°C to +85	°C
Supply Voltage to Ground Potential (Inputs & Vcc Only) –0.5V to +7.0 $$	VC
Supply Voltage to Ground Potential (Outputs & D/O Only) –0.5V to $+7.6$	VC
DC Input Voltage0.5V to +7.0	V 0
DC Output Current	nΑ
Power Dissipation	W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $T_A = -40$ °C to +85°C, $V_{CC} = 5.0$ V ± 5 %)

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Тур. (2)	Max.	Units
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -15.0 \text{mA}$	2.4	3.0		V
V _{OL}	Output LOW Current	$V_{CC} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 48mA$			0.3	0.50	V
V _{OL}	Output LOW Current	$V_{CC} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 12 \text{mA} (25\Omega \text{ Series})$		0.3	0.50	V
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level					V
V_{IL}	Input LOW Voltage	Guaranteed Logic LOW Level				0.8	V
I_{IH}	Input HIGH Current	$V_{CC} = Max.$	$V_{IN} = V_{CC}$			1	μA
I_{IL}	Input LOW Current	$V_{CC} = Max.$	$V_{IN} = GND$			-1	μA
V _{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18 \text{ mA}$			-0.7	-1.2	V
I _{OFF}	Power Down Disable	$V_{CC} = GND, V_{OUT} = 4.5V$			_	100	μA
I _{OS}	Short Circuit Current	$V_{CC} = Max.^{(3)}, V_{OUT} = GND$		-60	-120		mA
V _H	Input Hysteresis				200		mV

Capacitance (TA = 25° C, f = 1 MHz)

Parameters ⁽⁴⁾	Description	Test Conditions	Тур.	Max.	Units
C _{IN}	Input Capacitance	$V_{IN} = 0V$	6	10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 0V$	8	12	pF

3

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{CC} = 5.0V$, $+25^{\circ}C$ ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾			Typ. ⁽²⁾	Max.	Units
I_{CC}	Quiescent Power Supply Current	$V_{CC} = Max.$ $Freq = 0$	$V_{IN} = GND = V_{CC}$		0.1	500	μА
ΔI_{CC}	Supply Current per Input @ TTL HIGH	$V_{CC} = Max.$ $Freq = 0$	$V_{IN} = 3.4V^{(3)}$		0.5	2.0	mA
I _{CCD}	Supply Current per Input per MHz ⁽⁴⁾	V _{CC} = Max., Outputs Open and Enabled One Bit Toggling 50% Duty Cycle, other input at GND or V _{CC}	$V_{IN} = V_{CC}$ $V_{IN} = GND$		0.15	0.25	mA/ MHz

4

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at $V_{CC} = 5.0V$, $+25^{\circ}C$ ambient.
- 3. Per TTL driven input ($V_{IN} = 3.4V$); all other inputs at V_{CC} or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
- 6. $I_C = I_{QUIESCENT} + I_{INPUTS} + I_{DYNAMIC}$
 - $I_{C} = I_{CC} + \Delta I_{CC} D_{H} N_{T} + I_{CCD} (f_{CP}/2 + f_{I} N_{I})$
 - I_{CC} = Quiescent Current
 - ΔI_{CC} = Power Supply Current for a TTL High Input ($V_{IN} = 3.4V$)
 - $D_H = Duty Cycle for TTL Inputs High$
 - N_T = Number of TTL Inputs at D_H
 - I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
 - f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)
 - $f_I = Input Frequency$
 - $N_I = Number of Inputs at f_I$
 - All currents are in milliamps and all frequencies are in megahertz.

Switching Characteristics (Over Operating Range)

Symbol	Description ⁽¹⁾	Conditions	193T 2193T		193A 2193A		Units
			Min.	Max.	Min.	Max.	
t _{CPTC}	Propagation Delay CPU to TCU/TCD		2.0	10	2.0	6.5	
t _{CPQ}	Propagation Delay CPU/D to Qi		2.0	13.5	2.0	8.8	
t_{DQ}	Propagation Delay Di to Qi		2.0	15.5	2.0	10.1	
t_{PLQ}	Propagation Delay PL to Qi	$C_{L} = 50pF$ $R_{L} = 500\Omega$	2.0	14	2.0	8.8	
t_{MRQ}	Propagation Delay MR to Qi		3.0	15.5	3.0	10.1	ns
t _{MRICU}	Propagation Delay MR to TCU		3.0	14.5	3.0	9.4	
t_{MRICD}	Propagation Delay MR to TCD		3.0	15.5	3.0	10.1	
t _{PLTC}	Propagation Delay PL to TCU/D		3.0	16.5	3.0	10.8	
$t_{ m DIC}$	Propagation Delay Di to TCU/D		3.0	15.5	3.0	10.1	

5

Notes:

- 1. See Test Circuit and Waveforms.
- 2. Minimum limits are guaranteed but not tested on Propgation Delays.
- 3. This parameter guaranteed but not production tested.

Timing Characteristics (Over Operating Range)

Symbol	Description	Conditions	193 2193		193A 2193A		Units
			Min.	Max.	Min.	Max.	
t _{DPLS}	Di to \overline{PL}		5.0		4.0		
t _{DPLH}	Di to PL	$C_L = 50 \mathrm{pF}$	2.0		1.5		
$t_{ m PLW}$	PL Low Time		6.0		5.0		
t _{CP}	CPU/D Pulse Width HIGH and LOW		5.0		4.0		
t _{CPL}	CPU/D Pulse Width LOW (change of direction)	$R_L = 500\Omega$	10		8.0		ns
$t_{ m MRH}$	MR High Time		6.0		5.0		
t _{RPLCR}	PL to CPU/D Recovery		6.0		5.0		
t _{RMRCR}	MR to CPU/D Recovery		4.0		3.0		

Notes:

- 1.See Test Circuit and Waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. This parameter guaranteed but not production tested.

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com

6